Гидравлический расчет межцехового газопровода
Пропускная способность газопроводов должна приниматься из условий создания при максимально допустимых потерях давления газа наиболее экономичной и надежной в эксплуатации системы, обеспечивающей устойчивость работы ГРП и газорегуляторных установок (ГРУ), а также работы горелок потребителей в допустимых диапазонах давления газа.
Расчетные внутренние диаметры газопроводов определяются исходя из условия обеспечения бесперебойного газоснабжения всех потребителей в часы максимального потребления газа.
Значения расчетной потери давления газа при проектировании газопроводов всех давлений для промышленных предприятий принимаются в зависимости от давления газа в месте подключения с учетом технических характеристик принимаемого к установке газового оборудования, устройств автоматики безопасности и автоматики регулирования технологического режима тепловых агрегатов.
Падение давления для сетей среднего и высокого давлений определяются по формуле
где Pн – абсолютное давление в начале газопровода, МПа;
Рк – абсолютное давление в конце газопровода, МПа;
Р0 = 0,101325 МПа;
l – коэффициент гидравлического трения;
l – расчетная длина газопровода постоянного диаметра, м;
d – внутренний диаметр газопровода, см;
r0 – плотность газа при нормальных условиях, кг/м3;
Q0 – расход газа, м3/ч, при нормальных условиях;
Для наружных надземных и внутренних газопроводов расчетную длину газопроводов определяют по формуле
где l1 – действительная длина газопровода, м;
Sx – сумма коэффициентов местных сопротивлений участка газопровода;
При выполнении гидравлического расчета газопроводов расчетный внутренний диаметр газопровода следует предварительно определять по формуле
где dp – расчетный диаметр, см;
А, В, т, т1 – коэффициенты, определяемые по в зависимости от категории сети (по давлению) и материала газопровода;
Q0 – расчетный расход газа, м3/ч, при нормальных условиях;
DРуд – удельные потери давления, МПа/м, определяемые по формуле
где DРдоп – допустимые потери давления, МПа/м;
L – расстояние до самой удаленной точки, м.
где Р0 = 0,101325 МПа;
Рт – усредненное давление газа (абсолютное) в сети, МПа.
где Рн, Рк – соответственно начальное и конечное давление в сети, МПа.
Принимаем тупиковую схему газоснабжения. Выполняем трассировку межцехового газопровода высокого давления. Разбиваем сеть на отдельные участки. Расчетная схема межцехового газопровода приведена на рисунке 1.1.
Определяем удельные потери давления для межцеховых газопроводов:
Предварительно определяем расчетный внутренний диаметр на участках сети:
Теплообменные устройства
Эффективное использование теплоты во вращающихся печах возможно только при установке системы внутрипечных и запечных теплообменных устройств. Внутрипечные теплообменные устройства .
Фасадная система
Для придания реконструируемому зданию современного архитектурного облика и радикального повышения уровня теплозащиты наружных стен в качестве фасадной системы принята система «вен .
Жилище в стиле техно
Этот стиль, возникший в 80-е годы прошлого столетия, как некий ироничный ответ на радужные перспективы индустриализации и господства технического прогресса, провозглашенные в его начале.
Скорость потока теплоносителя.
Гидравлический расчёт трубопроводов системы отопления
Как видно из названия темы в расчёте участвуют такие параметры, связанные с гидравликой, как расход теплоносителя, скорость потока теплоносителя, гидравлическое сопротивление трубопроводов и арматуры. При этом между указанными параметрами существует полная взаимосвязь.
Например при увеличении скорости теплоносителя увеличивается гидравлическое сопротивление трубопровода. При увеличении расхода теплоносителя через трубопровод определённого диаметра скорость теплоносителя возрастает и естественно растёт гидравлическое сопротивление при этом изменяя диаметр в большую сторону скорость и гидравлическое сопротивление снижаются. Анализируя эти взаимосвязи гидравлический расчёт превращается в своего рода анализ параметров для обеспечения надёжной и эффективной работы системы и снижения затрат на материалы.
Система отопления состоит из четырёх основных компонентов это трубопроводы, отопительные приборы, теплогенератор, регулирующая и запорная арматура. Все элементы системы имеют свои характеристики гидравлического сопротивления и должны учитываться при расчёте. При этом, как было сказано выше, гидравлические характеристики не являются постоянными. Производители отопительного оборудования и материалов обычно приводят данные по гидравлическим характеристикам (удельные потери давления) на производимое ими материалы или оборудование.
Номограмма для гидравлического расчёта полипропиленовых трубопроводов производства фирмы FIRAT (Фират)
Удельные потери давления (потеря напора) трубопровода указано для 1 м.п. трубы.
Проанализировав номограмму вы более наглядно увидите ранее указанные взаимосвязи между параметрами.
Итак суть гидравлического расчёта мы определили.
Теперь пройдёмся отдельно по каждому из параметров.
Расход теплоносителя
Расход теплоносителя, для более широкого понимания количество теплоносителя, напрямую зависит от тепловой нагрузки которую теплоноситель должен переместить от теплогенератора к отопительному прибору.
Конкретно для гидравлического расчёта требуется определить расход теплоносителя на заданном расчётном участке. Что такое расчётный участок. Расчетным участком трубопровода принимается участок постоянного диаметра с неизменным расходом теплоносителя. Например если в состав ветки входят десять радиаторов ( условно каждый прибор мощностью 1 кВт) а общий расход теплоносителя рассчитан на перенос теплоносителем тепловой энергии равной 10 кВт. То первым участком будет участок от теплогенератора до первого в ветке радиатора (при условии что по всему участку постоянный диаметр) с расходом теплоносителя на перенос 10 кВт. Второй участок будет находится между первым и вторым радиатором с расходом на перенос тепловой энергии 9 кВт и так далее вплоть до последнего радиатора. Рассчитывается гидравлическое сопротивление как подающего трубопровода так и обратного.
Расход теплоносителя ( кг/час) для участка рассчитывается по формуле:
Qуч – тепловая нагрузка участка Вт. Например для вышеуказанного примера тепловая нагрузка первого участка равна 10 кВт или 1000 Вт.
с = 4,2 кДж/(кг·°С) – удельная теплоемкость воды
tг – расчетная температура горячего теплоносителя в системе отопления, °С
tо – расчетная температура охлажденного теплоносителя в системе отопления, °С.
Скорость потока теплоносителя.
Минимальный порог скорости теплоносителя рекомендуют принимать в пределах 0,2 – 0,25 м/с. На меньших скоростях начинается процесс выделения избыточного воздуха содержащегося в теплоносителе что может приводить к образованию воздушных пробок и как следствие полный либо частичный отказ работы системы отопления. Верхний порог скорости теплоносителя лежит в диапазоне 0,6 – 1,5 м/с. Соблюдение верхнего порога скорости позволяет избежать возникновение гидравлических шумов в трубопроводах. На практике было определён оптимальный диапазон скорости 0,3 – 0,7 м/с .
Более точный диапазон рекомендованной скорости теплоносителя зависит от материала трубопроводов применяемых в системе отопления а точнее от коэффициента шероховатости внутренней поверхности трубопроводов . Например для стальных трубопроводов лучше придерживаться скорости теплоносителя от 0,25 до 0,5 м/с для медных и полимерных (полипропиленовые, полиэтиленовые, металлопластиковые трубопроводы) от 0,25 до 0,7 м/с либо воспользоваться рекомендациями производителя при их наличии.
Скорость потока теплоносителя Скорость потока теплоносителя. Гидравлический расчёт трубопроводов системы отопления Как видно из названия темы в расчёте участвуют такие параметры, связанные с гидравликой, как расход
Основные элементы, которые он определяет
Определяется диаметр труб на комбинирующих отделах отопительной системы.
- Гидравлический расход давления для разных отделов отопительной системы;
- Гидравлическую связку ветвей конструкции, расположенных параллельно либо иначе. В таком случае применяется управляющий каркас, предназначенный для балансировки в обстоятельствах нестационарных и температурных режимов процесса;
- Потери давления носителя тепла и его расход при циркуляции в системе.
Нужно обратить внимание на то, что гидравлический расчет является самым трудозатратным, сложным и главным этапом на стадии проектирования отопления. Желательно, чтобы вы поручили это дело настоящим специалистам
До того как начать проводить непосредственные вычисления, нужно провести ряд графических и расчетных работ:
- Выявить показатель равновесия тепла помещения, которое предстоит отапливать;
- Разобраться с видом приборов отопления, теплообменных плоскостей и показать размещение всех деталей в плане помещения;
- Окончательно решить вопрос общей конструкции отопительной системы, вида труб, запорного и управляющего каркаса. Установить местоположение генератора тепла, приборных веток и всех трубопроводов. А также расположение для кранов, клапанов, вентилей, стабилизаторов давления и расходов и термоконтроллеров;
- Прочертить подробный чертеж отопительной системы. Не забыв указать номера нагрузок тепла и длину предполагаемых отделов;
- Выявить кольцо циркуляции, то есть контур замкнутого типа, подсоединяющий ступенчатые отделы трубопровода. В том участке, где предположительно будет происходить наибольшая потеря носителя тепла на определенном отделе от источника тепла до далеко расположенного прибора отопления, либо до ветки-стояка и обратно к обогревателю.
Пример в общих чертах и подробное видео расчета
Пример ввода данных в программу по расчету гидравлики труб
В роли расчетного трубопровода может выступать отдел с устойчивыми затратами носителя тепла и неизменяемого диаметра.
Этот отдел определяется на основании теплового баланса помещения. Пронумеровать участки, необходимо начиная от вашего источника тепла.
Для обозначения связующих узлов на подающем магистрально трубопроводе в участках ответвлений используют прописные буквы алфавита.
В узлах на сборных магистралях их обозначают штрихом.
Узловые точки на приборных ветках в участках ответвлений отмечают арабскими цифрами. Каждая из точек соответствует номеру этажа (при горизонтальной системе) или номеру ветки стояка (при вертикальной). Узлы сбора потоков отмечают штрихами. Номера всегда содержат 2 цифры:
- Первая — начало участка;
- Вторя — конец участка;
В вертикальных конструкциях нумерация приборных ветвей производится арабскими цифрами по периметру строения по часовой стрелке.
Протяженность участков трубопровода определяется планом-сметой, точность равна 10 см.
Тепловой поток вычисляемого участка приравнивается к тепловой нагрузке, которую обязан дать либо передал теплоноситель, протекающий на участке трубопровода.
Данная программа самостоятельно подберет:
- Диаметр у трубопровода;
- Габариты устройств обогрева;
- Регулировку балансировочных вентилей;
- Настройку регулирующих вентилей;
- Подготовительную регулировку термостатических клапанов (при необходимости);
- Настройку регуляторов перепада давления.
Смотрите видео наглядного гидравлического расчета отопления с примерами:
Естественно, приведенная в этой заметке информация является обобщающей и предназначена лишь для ознакомления.
Без изучения специальной технической литературы (В.В. Покотилов. Пособие по расчёту систем отопления. Вена. — «HERZ Аrmaturen G.m.b.H.», 2006.) никак не обойтись. Однако все же, будем надеяться, что основные выводы и специфика исполнения гидравлического расчета системы отопления вам понятны.
Инструменты в Главном меню программы Valtec
У Valtec, как и у любой другой программы, вверху расположено главное меню.
Кликаем на кнопку «Файл» и в открывшемся подменю видим стандартные инструменты, известные любому пользователю компьютера по другим программам:
Запускается программа «Калькулятор», встроенная в Windows – для выполнения расчётов:
С помощью «Конвертера» мы будем переводить одни единицы измерения в другие:
Здесь три столбца:
В крайнем левом выбираем ту физическую величину, с которой работаем, например, давление. В среднем столбце — единицу, из которой нужно перевести (например, Паскали – Па), а в правом – в которую нужно перевести (например, в атмосферы технические). В левом верхнем углу калькулятора есть две строки, в верхнюю будем вбивать полученное при расчетах значение, а в нижней будет сразу отображаться перевод в требуемые единицы измерения… Но обо всём этом поговорим в своё время, когда дойдёт до практики.
А пока продолжаем знакомиться с меню «Инструменты». «Генератор бланков»:
Это нужно для проектировщиков, выполняющих проекты на заказ. Если мы делаем отопление только в своём доме, то «Генератор бланков» нам без надобности.
Следующая кнопка в главном меню программы Valtec – «Стили»:
Она для управления внешним видом окна программы – подстраивает под то программное обеспечение, которое установлено на вашем компьютере. По мне так ненужный прибамбас, т. к. я из тех, для кого главное не «шашечки», а доехать. А вы для себя решайте сами.
Рассмотрим более подробно инструменты, находящиеся под этой кнопкой.
В «Климатологии» выбираем район строительства:
Потери тепла в доме зависят не только от материалов стен и прочих конструкций, а и от климата местности, где здание находится. Следовательно, и требования к системе отопления зависят от климата.
В левой колонке находим район, в котором живём (республику, область, край, город). Если нашего населённого пункта здесь нет, то выбираем ближайший.
«Материалы». Здесь перечислены параметры разных строительных материалов, применяемых в конструкциях домов. Именно поэтому при сборе исходных данных (см. предыдущие материалы по проектированию) мы перечисляли материалы стен, полов, потолков:
Инструмент «Проёмы». Здесь сведения по дверным и оконным проёмам:
«Трубы». Здесь собраны сведения о параметрах труб, применяемых в системах отопления: размеры внутренние, наружные, коэффициенты сопротивления, шероховатость внутренних поверхностей:
Это нам понадобится при гидравлических расчётах – для определения мощности циркуляционного насоса .
«Теплоносители». Собственно, здесь ничего кроме характеристик тех теплоносителей, которые могут быть залиты в систему отопления дома:
Эти характеристики — теплоёмкость, плотность, вязкость.
Не всегда в качестве теплоносителя используют воду, бывает, что в систему заливают антифризы, называемые в простонародии «незамерзайками». О выборе теплоносителя поговорим в отдельной статье.
«Потребители» для расчета системы отопления не нужны, т. к. этот инструмент для расчётов систем водоснабжения:
«КМС» (коэффициенты местного сопротивления):
Любой отопительный прибор (радиатор, вентиль, термостат и пр.) создаёт сопротивление для движения теплоносителя, и эти сопротивления нужно учесть, чтобы правильно подобрать мощность циркуляционного насоса.
«Приборы по DIN». Это, как и «Потребители», больше касается систем водоснабжения:
Последовательность выполнения гидравлического расчета
1. Выбирается главное циркуляционное кольцо системы отопления (наиболее невыгодно расположенное в гидравлическом отношении). В тупиковых двухтрубных системах это кольцо, проходящее через нижний прибор самого удаленного и нагруженного стояка, в однотрубных – через наиболее удаленный и нагруженный стояк.
Например, в двухтрубной системе отопления с верхней разводкой главное циркуляционное кольцо пройдет от теплового пункта через главный стояк, подающую магистраль, через самый удаленный стояк, отопительный прибор нижнего этажа, обратную магистраль до теплового пункта.
В системах с попутным движением воды в качестве главного принимается кольцо, проходящее через средний наиболее нагруженный стояк.
2. Главное циркуляционное кольцо разбивается на участки (участок характеризуется постоянным расходом воды и одинаковым диаметром). На схеме проставляются номера участков, их длины и тепловые нагрузки. Тепловая нагрузка магистральных участков определяется суммированием тепловых нагрузок, обслуживаемых этими участками. Для выбора диаметра труб используются две величины:
а) заданный расход воды;
б) ориентировочные удельные потери давления на трение в расчетном циркуляционном кольце Rср.
Для расчета Rcp необходимо знать длину главного циркуляционного кольца и расчетное циркуляционное давление.
3. Определяется расчетное циркуляционное давление по формуле
, (5.1)
где– давление, создаваемое насосом, Па. Практика проектирования системы отопления показала, что наиболее целесообразно принять давление насоса, равное
, (5.2)
где
– сумма длин участков главного циркуляционного кольца;
– естественное давление, возникающее при охлаждении воды в приборах, Па, можно определить как
, (5.3)
где– расстояние от центра насоса (элеватора) до центра прибора нижнего этажа, м.
Значение коэффициента можно определить из табл.5.1.
Таблица 5.1 – Значение в зависимости от расчетной температуры воды в системе отопления
(),C | , кг/(м3К) |
85-65 | 0,6 |
95-70 | 0,64 |
105-70 | 0,66 |
115-70 | 0,68 |
– естественное давление, возникающее в результате охлаждения воды в трубопроводах .
В насосных системах с нижней разводкой величинойможно пренебречь.
Определяются удельные потери давления на трение
, (5.4)
где к=0,65 определяет долю потерь давления на трение.
5. Расход воды на участке определяется по формуле
(5.5)
гдеQ – тепловая нагрузка на участке, Вт:
(tг – tо) – разность температур теплоносителя.
6. По величинамиподбираются стандартные размеры труб .
6. Для выбранных диаметров трубопроводов и расчетных расходов воды определяется скорость движения теплоносителя v и устанавливаются фактические удельные потери давления на трение Rф.
При подборе диаметров на участках с малыми расходами теплоносителя могут быть большие расхождения междуи. Заниженные потерина этих участках компенсируются завышением величинна других участках.
7. Определяются потери давления на трение на расчетном участке, Па:
. (5.6)
Результаты расчета заносят в табл.5.2.
8. Определяются потери давления в местных сопротивлениях, используя или формулу:
, (5.7)
где– сумма коэффициентов местных сопротивлений на расчетном участке .
Значение ξ на каждом участке сводят в табл. 5.3.
Таблица 5.3 – Коэффициенты местных сопротивлений
№ п/п | Наименования участков и местных сопротивлений | Значения коэффициентов местных сопротивлений | Примечания |
9. Определяют суммарные потери давления на каждом участке
. (5.8)
10. Определяют суммарные потери давления на трение и в местных сопротивлениях в главном циркуляционном кольце
. (5.9)
11. Сравнивают Δр с Δрр. Суммарные потери давления по кольцу должны быть меньше величины Δрр на
. (5.10)
Запас располагаемого давления необходим на неучтенные в расчете гидравлические сопротивления.
Если условия не выполняются, то необходимо на некоторых участках кольца изменить диаметры труб.
12. После расчета главного циркуляционного кольца производят увязку остальных колец. В каждом новом кольце рассчитывают только дополнительные не общие участки, параллельно соединенные с участками основного кольца.
Невязка потерь давлений на параллельно соединенных участках допускается до 15% при тупиковом движении воды и до 5% – при попутном.
Таблица 5.2 – Результаты гидравлического расчета для системы отопления
На схеме трубопровода | По предварительному расчету | По окончательному расчету | ||||||||||||||
Номер участка | Тепловая нагрузка Q, Вт | Расход теплоносителя G, кг/ч | Длина участка l,м | Диаметрd, мм | Скоростьv, м/с | Удельные потери давления на трение R, Па/м | Потери давления на трение Δртр, Па | Сумма коэффициентов местных сопротивлений∑ξ | Потери давления в местных сопротивлениях Z | d, мм | v, м/с | R, Па/м | Δртр, Па | ∑ξ | Z, Па | Rl+Z, Па |
Занятие 6
Определение диаметра труб
Для окончательного определения диаметра и толщины отопительных труб осталось обсудить вопрос относительно потерь теплоты.
Максимальное количество тепла уходит из помещения через стены – до 40%, через окна – 15%, пол – 10%, всё остальное через потолок/крышу. Для квартиры характерны потери в основном через окна и балконные модули
Существует несколько видов потерь теплоты в отапливаемых помещениях:
- Потери давления потока в трубе. Этот параметр прямо пропорционален произведению удельной потери на трение внутри трубы (предоставляет производитель) на общую длину трубы. Но учитывая текущую задачу такие потери можно не учитывать.
- Потери напора на местных трубных сопротивлениях – издержки теплоты на фитингах и внутри оборудования. Но учитывая условия задачи, небольшое количество фитинг-изгибов и число радиаторов, такими потерями можно пренебречь.
- Теплопотери исходя из расположения квартиры. Существует ещё один тип тепловых издержек, но они больше связаны с расположением помещения относительного остального здания. Для обычной квартиры, которая находиться в средине дома и соседствует слева/справа/сверху/снизу с другими квартирами, тепловые потери через боковые стены, потолок и пол практически равны “0”.
В расчёт можно только взять потери через фасадную часть квартиры – балкон и центральное окно общей комнаты. Но это вопрос закрывается за счёт дополнения 2-3 секций к каждому из радиаторов.
Значение диаметра труб подбирают по расходу теплоносителя и скорости его циркуляции в отопительной магистрали
Анализируя выше изложенную информацию, стоит отметить что для рассчитанной скорости горячей воды в системе отопления известна табличная скорость перемещения частиц воды относительно стенки трубы в горизонтальном положении 0,3-0,7 м/с.
В помощь мастеру представляем так называемый чек-лист проведения вычислений для типичного гидравлического расчёта системы отопления:
- сбор данных и расчёт мощности котла;
- объём и скорость теплоносителя;
- потери теплоты и диаметр труб.
Иногда при просчёте можно получить достаточно большой диаметр трубы, что бы перекрыть расчётный объём теплоносителя. Эту проблему можно решить увеличением литража котла или добавлением дополнительного расширительного бака.
На нашем сайте есть блок статей, посвященных расчету отопительной системы, советуем ознакомиться:
- Тепловой расчёт системы отопления: как грамотно сделать расчет нагрузки на систему
- Расчет водяного отопления: формулы, правила, примеры выполнения
- Теплотехнический расчет здания: специфика и формулы выполнения вычислений + практические примеры
Что нам дает гидравлический расчет?
- Потери носителя тепла и давления в самой системе.
- Необходимый диаметр труб на самых ответственных участках магистрали. В этом случае необходимо учесть то, каковыми являются требуемые и материально целесообразные скорости перемещения теплоносителя.
- Гидроувязка всех ветвей отопительной системы. При этом для того, чтобы сбалансировать систему в различных режимах функционирования, необходимо использовать упомянутую ранее арматуру регулировки.
- Утеря давления на прочих отрезках магистрали.
Важная информация! Во время проектирования и установки обогревательной системы самым трудоемким и ответственным этапом работы считается именно гидравлический расчет.
Но до того как произвести гидравлический расчет системы отопления, нужно предварительно выполнить целый ряд процедур.