Теплопроводность строительных материалов

Эффективность многослойных конструкций

Плотность и теплопроводность

В настоящее время нет такого строительного материала, высокая несущая способность которого сочеталась бы с низкой теплопроводностью. Строительство зданий по принципу многослойных конструкций позволяет:

  • соответствовать расчётным нормам строительства и энергосбережения;
  • оставлять размеры ограждающих конструкций в пределах разумного;
  • уменьшить материальные затраты на строительство объекта и его обслуживание;
  • добиться долговечности и ремонтопригодности (например, при замене одного листа минеральной ваты).

Комбинация конструкционного материала и теплоизоляционного позволяет обеспечить прочность и снизить потерю тепловой энергии до оптимального уровня. Поэтому при проектировании стен при расчётах учитывается каждый слой будущей ограждающей конструкции.

Важно также учитывать плотность при строительстве дома и при его утеплении. Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух

Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух

Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух.

Расчёт толщины стен и утеплителя

Расчёт толщины стены зависит от следующих показателей:

  • плотности;
  • расчётной теплопроводности;
  • коэффициента сопротивления теплопередачи.

Согласно установленных норм, значение показателя сопротивления теплопередачи наружных стен должно быть не менее 3,2λ Вт/м •°С.

Расчёт толщины стен из железобетона и прочих конструкционных материалов представлен в таблице 2. Такие строительные материалы отличаются высокими несущими характеристиками, они долговечны, но в качестве тепловой защиты они неэффективны и требуют нерациональной толщины стены.

Таблица 2

ПоказательБетоны, растворно-бетонные смеси
ЖелезобетонЦементно-песчаный растворСложный раствор (цементно-известково-песчаный)Известково-песчаный раствор
плотность, кг/куб.м2500180017001600
коэффициент теплопроводности, Вт/(м•°С)2,040,930,870,81
толщина стен, м6,532,982,782,59

Конструкционно-теплоизоляционные материалы способны подвергаться достаточно высоким нагрузкам, при этом значительно повышают теплотехнические и акустические свойства зданий в стеновых ограждающих конструкциях (таблица 3.1, 3.2).

Таблица 3.1

ПоказательКонструкционно-теплоизоляционные м-лы
ПемзобетонКерамзитобетонПолистиролбетонПено- и газобетон (пено- и газосиликат)Кирпич глиняныйСиликатный кирпич
плотность, кг/куб.м80080060040018001800
коэффициент теплопроводности, Вт/(м•°С)0,680,3260,20,110,810,87
толщина стен, м2,1761,040,640,352,592,78

Таблица 3.2

ПоказательКонструкционно-теплоизоляционные м-лы
Кирпич шлаковыйСиликатный кирпич 11-типустотныйКирпич силикатный 14-типустотныйСосна (поперечное расположение волокон)Сосна (продольное расположение волокон)Фанера клеёная
плотность, кг/куб.м150015001400500500600
коэффициент теплопроводности, Вт/(м•°С)0,70,810,760,180,350,18
толщина стен, м2,242,592,430,581,120,58

Значительно повысить теплозащиту зданий и сооружений позволяют теплоизоляционные строительные материалы. Данные таблицы 4 показывают, что наименьшие значения коэффициента теплопроводности имеют полимеры, минераловатные, плиты из природных органических и неорганических материалов.

Таблица 4

ПоказательТеплоизоляционные м-лы
ППТПТ полистиролбетонныеМаты минераловатныеПлиты теплоизоляционные (ПТ) из минеральной ватыДВП (ДСП)ПакляЛисты гипсовые (сухая штукатурка)
плотность, кг/куб.м3530010001902001501050
коэффициент теплопро- водности, Вт/(м•°С)0,390,10,290,0450,070,1921,088
толщина стен, м0,120,320,9280,140,2240,2241,152

Значения таблиц теплопроводности строительных материалов применяются при расчётах:

  • теплоизоляции фасадов;
  • общестроительной изоляции;
  • изоляционных материалов при устройстве кровли;
  • технической изоляции.

Задача выбора оптимальных материалов для строительства, конечно же, подразумевает более комплексный подход. Однако даже такие простые расчёты уже на первых этапах проектирования позволяют определить наиболее подходящие материалы и их количество.

Теплопроводность воздуха

Воздух представляет собой смесь газов в различных пропорциях, каждый из которых обладает собственными теплофизическими характеристиками. Для удобства в расчётах вместо воздуха как смеси используют его модель как однородного газа. Основные газообразные компоненты воздуха:

  • кислород — 20,95% по объёму и 23,20% по весу;
  • азот — 78,09% и 75,47%, соответственно;
  • углекислый газ — 0,03% и 0,046%;
  • водород, аргон, криптон и другие газы в ничтожных количествах.

Изменение теплопроводности смеси атмосферных газов — сложный процесс, зависящий от многих физических явлений, например, от влажности. Поэтому коэффициент теплопроводности воздуха при различных температурах — не расчётная величина, а усреднённый результат многочисленных экспериментов. Следует отметить, что для атмосферных колебаний давления изменениями λ можно пренебречь. Таблица коэффициентов теплопроводности воздуха в зависимости от значений температуры выглядит так:

Температура, Kλ, Вт/(м·град)ТλТλТλ
900,00842300,02043700,03156000,0469
1000,00932400,02123800,03236500,0497
1100,01022500,02213900,03307000,0524
1200,01112600,02294000,03387500,0549
1300,01202700,02384200,03528000,0573
1400,01292800,02464400,03668500,0596
1500,01382900,02544600,03809000,0620
1600,01473000,02624800,03949500,0643
1700,01553100,02695000,040710000,0667
1800,01643200,02775200,042010500,0691
1900,01723300,02855400,043311000,0715
2000,01803400,02925600,044511500,0739
2100,01883500,03005800,045712000,0763
2200,01963600,0308

Эти данные точны для сухого газообразного воздуха в состоянии покоя при атмосферном давлении 1 бар при идеальных пропорциях составляющих его газов. На практике отклонения от табличных значений могут быть вызваны самыми разнообразными факторами.

Например, наличие промышленных производств, выбрасывающих в атмосферу огромное количество химических и биологических микрочастиц (альдегиды, аммиак, оксиды, тяжёлые металлы), приводит к значительным загрязнениям атмосферы, а подобные примеси в больших количествах способны не только локально изменить теплопроводность воздуха, но и повлиять на глобальный теплообмен

Основные виды коэффициентов теплопередачи материала. Таблица + примеры

Расчёт необходимого утеплителя, если это касается внешних стен дома исходит от регионального размещения здания. Чтобы объяснить наглядно как он происходит, в таблице ниже, приведённые цифры будут касаться Красноярского края.

Вид материала

Теплопередача, Вт/(м*°С)

Толщина стен, мм

Иллюстрация

3Д панели5500
Лиственные породы деревьев с влажностью 15%0,151230
Бетон на основе керамзита0,21630
Пеноблок с плотностью 1 тыс. кг/м³0,32450
Хвойные породы деревьев вдоль волокон0,352860
Дубовая вагонка0,413350
Кирпичная стена на растворе из цемента и песка0,877110
Железобетонные перекрытия1,713890

Каждое здание имеет разные сопротивления теплопередачи материалов. Таблица ниже, которая является выдержкой из СНиПа, ярко это демонстрирует.

Теплопроводность материалов: параметры

Принято условное разделение материалов, применяемых в строительстве, на конструкционные и теплоизоляционные.

Конструкционные материалы применяются для возведения ограждающих конструкций (стен, перегородок, перекрытий). Они отличаются большими значениями теплопроводности.

Значения коэффициентов теплопроводности сведены в таблицу 1:

Нестационарные методы определения коэффициента теплопроводности используются, в частности, в тех случаях, когда применение метода сляба не может быть применено. Более низкая надежность измерения компенсируется, в частности, быстрой реализацией эксперимента. Оценка эксперимента быстро и может быть алгоритмизирована для онлайн-обработки компьютером.

В этой статье приведены данные по теплопроводности для выбора общих материалов. Теплопроводность измеряет способность материалов пропускать тепло через него через проводимость. Теплопроводность материала сильно зависит от состава и структуры. Вообще говоря, плотные материалы, такие как металлы и камень, являются хорошими проводниками тепла, в то время как вещества с низкой плотностью, такие как газ и пористая изоляция, являются плохими проводниками тепла. Теплопроводность материалов требуется для анализа при изучении теплообмена в системе.

Таблица 1

Подставляя в формулу (2) данные, взятые из нормативной документации, и данные из Таблицы 1, можно получить требуемую толщину стен для конкретного климатического района.

При выполнении стен только из конструкционных материалов без использования теплоизоляции их необходимая толщина (в случае использования железобетона) может достигать нескольких метров. Конструкция в этом случае получится непомерно большой и громоздкой.

В статье. В следующих таблицах показаны теплопроводности для обычных веществ. Строительные материалы или строительные материалы являются основным требованием в этот современный век технологии. Существует много типов строительных материалов, используемых для различных строительных работ.

Свойства строительных материалов

Для того чтобы материал рассматривался как строительный материал, он должен обладать необходимыми инженерными свойствами, подходящими для строительных работ. Эти свойства строительных материалов отвечают за его качество и мощность и помогают решать их применение.

Допускают возведение стен без использования дополнительного утепления, пожалуй, только пенобетон и дерево. И даже в этом случае толщина стены достигает полуметра.

Основной их диапазон лежит в пределах от 0,03 до 0,07 Вт/(м*°С). Наиболее распространенные материалы – это экструдированный пенополистирол, минеральная вата, пенопласт, стекловата, утепляющие материалы на основе пенополиуретана. Их использование позволяет значительно снизить толщину ограждающих конструкций.

Процесс передачи энергии от более нагретой части тела к менее нагретой называется теплопроводностью. Числовое значение такого процесса отражает коэффициент теплопроводности материала. Это понятие является очень важным при строительстве и ремонте зданий. Правильно подобранные материалы позволяют создать в помещении благоприятный микроклимат и сэкономить на отоплении существенную сумму.

Пористость строительных материалов

Пористость дает объем материала, занимаемого порами. Это отношение объема пор к объему материала. Пористость влияет на многие свойства, такие как теплопроводность, прочность, насыпная плотность, долговечность и т.д.

Долговечность строительных материалов

Свойство материала противостоять совместному действию атмосферных и других факторов известно как долговечность материала. Если материал более прочный, он будет полезен для более длительного срока службы. Стоимость обслуживания материала зависит от долговечности.

Эффективность многослойных конструкций

Плотность и теплопроводность

В настоящее время нет такого строительного материала, высокая несущая способность которого сочеталась бы с низкой теплопроводностью. Строительство зданий по принципу многослойных конструкций позволяет:

  • соответствовать расчётным нормам строительства и энергосбережения;
  • оставлять размеры ограждающих конструкций в пределах разумного;
  • уменьшить материальные затраты на строительство объекта и его обслуживание;
  • добиться долговечности и ремонтопригодности (например, при замене одного листа минеральной ваты).

Комбинация конструкционного материала и теплоизоляционного позволяет обеспечить прочность и снизить потерю тепловой энергии до оптимального уровня. Поэтому при проектировании стен при расчётах учитывается каждый слой будущей ограждающей конструкции.

Важно также учитывать плотность при строительстве дома и при его утеплении. Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух

Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух

Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух.

Расчёт толщины стен и утеплителя

Расчёт толщины стены зависит от следующих показателей:

  • плотности;
  • расчётной теплопроводности;
  • коэффициента сопротивления теплопередачи.

Согласно установленных норм, значение показателя сопротивления теплопередачи наружных стен должно быть не менее 3,2λ Вт/м •°С.

Расчёт толщины стен из железобетона и прочих конструкционных материалов представлен в таблице 2. Такие строительные материалы отличаются высокими несущими характеристиками, они долговечны, но в качестве тепловой защиты они неэффективны и требуют нерациональной толщины стены.

Таблица 2

ПоказательБетоны, растворно-бетонные смеси
ЖелезобетонЦементно-песчаный растворСложный раствор (цементно-известково-песчаный)Известково-песчаный раствор
плотность, кг/куб.м2500180017001600
коэффициент теплопроводности, Вт/(м•°С)2,040,930,870,81
толщина стен, м6,532,982,782,59

Конструкционно-теплоизоляционные материалы способны подвергаться достаточно высоким нагрузкам, при этом значительно повышают теплотехнические и акустические свойства зданий в стеновых ограждающих конструкциях (таблица 3.1, 3.2).

Таблица 3.1

ПоказательКонструкционно-теплоизоляционные м-лы
ПемзобетонКерамзитобетонПолистиролбетонПено- и газобетон (пено- и газосиликат)Кирпич глиняныйСиликатный кирпич
плотность, кг/куб.м80080060040018001800
коэффициент теплопроводности, Вт/(м•°С)0,680,3260,20,110,810,87
толщина стен, м2,1761,040,640,352,592,78

Таблица 3.2

ПоказательКонструкционно-теплоизоляционные м-лы
Кирпич шлаковыйСиликатный кирпич 11-типустотныйКирпич силикатный 14-типустотныйСосна (поперечное расположение волокон)Сосна (продольное расположение волокон)Фанера клеёная
плотность, кг/куб.м150015001400500500600
коэффициент теплопроводности, Вт/(м•°С)0,70,810,760,180,350,18
толщина стен, м2,242,592,430,581,120,58

Значительно повысить теплозащиту зданий и сооружений позволяют теплоизоляционные строительные материалы. Данные таблицы 4 показывают, что наименьшие значения коэффициента теплопроводности имеют полимеры, минераловатные, плиты из природных органических и неорганических материалов.

Таблица 4

ПоказательТеплоизоляционные м-лы
ППТПТ полистиролбетонныеМаты минераловатныеПлиты теплоизоляционные (ПТ) из минеральной ватыДВП (ДСП)ПакляЛисты гипсовые (сухая штукатурка)
плотность, кг/куб.м3530010001902001501050
коэффициент теплопро- водности, Вт/(м•°С)0,390,10,290,0450,070,1921,088
толщина стен, м0,120,320,9280,140,2240,2241,152

Значения таблиц теплопроводности строительных материалов применяются при расчётах:

  • теплоизоляции фасадов;
  • общестроительной изоляции;
  • изоляционных материалов при устройстве кровли;
  • технической изоляции.

Задача выбора оптимальных материалов для строительства, конечно же, подразумевает более комплексный подход. Однако даже такие простые расчёты уже на первых этапах проектирования позволяют определить наиболее подходящие материалы и их количество.

Эффективность многослойных конструкций

Плотность и теплопроводность

В настоящее время нет такого строительного материала, высокая несущая способность которого сочеталась бы с низкой теплопроводностью. Строительство зданий по принципу многослойных конструкций позволяет:

  • соответствовать расчётным нормам строительства и энергосбережения;
  • оставлять размеры ограждающих конструкций в пределах разумного;
  • уменьшить материальные затраты на строительство объекта и его обслуживание;
  • добиться долговечности и ремонтопригодности (например, при замене одного листа минеральной ваты).

Комбинация конструкционного материала и теплоизоляционного позволяет обеспечить прочность и снизить потерю тепловой энергии до оптимального уровня. Поэтому при проектировании стен при расчётах учитывается каждый слой будущей ограждающей конструкции.

Важно также учитывать плотность при строительстве дома и при его утеплении. Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух

Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух

Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух.

Расчёт толщины стен и утеплителя

Расчёт толщины стены зависит от следующих показателей:

  • плотности;
  • расчётной теплопроводности;
  • коэффициента сопротивления теплопередачи.

Согласно установленных норм, значение показателя сопротивления теплопередачи наружных стен должно быть не менее 3,2λ Вт/м •°С.

Расчёт толщины стен из железобетона и прочих конструкционных материалов представлен в таблице 2. Такие строительные материалы отличаются высокими несущими характеристиками, они долговечны, но в качестве тепловой защиты они неэффективны и требуют нерациональной толщины стены.

Таблица 2

ПоказательБетоны, растворно-бетонные смеси
ЖелезобетонЦементно-песчаный растворСложный раствор (цементно-известково-песчаный)Известково-песчаный раствор
плотность, кг/куб.м2500180017001600
коэффициент теплопроводности, Вт/(м•°С)2,040,930,870,81
толщина стен, м6,532,982,782,59

Конструкционно-теплоизоляционные материалы способны подвергаться достаточно высоким нагрузкам, при этом значительно повышают теплотехнические и акустические свойства зданий в стеновых ограждающих конструкциях (таблица 3.1, 3.2).

Таблица 3.1

ПоказательКонструкционно-теплоизоляционные м-лы
ПемзобетонКерамзитобетонПолистиролбетонПено- и газобетон (пено- и газосиликат)Кирпич глиняныйСиликатный кирпич
плотность, кг/куб.м80080060040018001800
коэффициент теплопроводности, Вт/(м•°С)0,680,3260,20,110,810,87
толщина стен, м2,1761,040,640,352,592,78

Таблица 3.2

ПоказательКонструкционно-теплоизоляционные м-лы
Кирпич шлаковыйСиликатный кирпич 11-типустотныйКирпич силикатный 14-типустотныйСосна (поперечное расположение волокон)Сосна (продольное расположение волокон)Фанера клеёная
плотность, кг/куб.м150015001400500500600
коэффициент теплопроводности, Вт/(м•°С)0,70,810,760,180,350,18
толщина стен, м2,242,592,430,581,120,58

Значительно повысить теплозащиту зданий и сооружений позволяют теплоизоляционные строительные материалы. Данные таблицы 4 показывают, что наименьшие значения коэффициента теплопроводности имеют полимеры, минераловатные, плиты из природных органических и неорганических материалов.

Таблица 4

ПоказательТеплоизоляционные м-лы
ППТПТ полистиролбетонныеМаты минераловатныеПлиты теплоизоляционные (ПТ) из минеральной ватыДВП (ДСП)ПакляЛисты гипсовые (сухая штукатурка)
плотность, кг/куб.м3530010001902001501050
коэффициент теплопро- водности, Вт/(м•°С)0,390,10,290,0450,070,1921,088
толщина стен, м0,120,320,9280,140,2240,2241,152

Значения таблиц теплопроводности строительных материалов применяются при расчётах:

  • теплоизоляции фасадов;
  • общестроительной изоляции;
  • изоляционных материалов при устройстве кровли;
  • технической изоляции.

Задача выбора оптимальных материалов для строительства, конечно же, подразумевает более комплексный подход. Однако даже такие простые расчёты уже на первых этапах проектирования позволяют определить наиболее подходящие материалы и их количество.

Практическое применение значения теплопроводности строительных материалов

Из понятия теплопроводности напрямую вытекает понятие толщины слоя материала для получения необходимого значения сопротивления теплового потока. Тепловое сопротивление – нормируемая величина.

Материалы из минеральных волокон, Изоляционные материалы на природном основании, Огнестойкая теплоизоляционная керамика, Изоляционные материалы на клеточном гипсовом ангидритовом основании, Строительная керамика, Теплоизоляционные растворы и штукатурные смеси и т.д. Наиболее важным является использование плоского измерительного оборудования в специальных применениях, где можно в полной мере применять его особые благоприятные свойства.

Определение теплопроводности в зависимости от влажности

Влага в пористой структуре строительных материалов оказывает основное влияние на величину коэффициента теплопроводности. Проблема большинства лабораторных методов определения коэффициента теплопроводности — очень длительный период измерения, при котором испытуемый образец подвергается воздействию теплового потока. Даже в том случае, если испытуемый образец упакован в паронепроницаемую пленку в течение периода измерения, происходит новое распределение влаги в структуре материала, и конечное измеренное значение не делает достаточно объективно реальные свойства материала при данной влажности содержание.

Упрощенная формула, определяющая толщину слоя, будет иметь вид:

где, H – толщина слоя, м;

R – сопротивление теплопередаче, (м2*°С)/Вт;

λ – коэффициент теплопроводности, Вт/(м*°С).

Данная формула применительно к стене или перекрытию имеет следующие допущения:

Определение коэффициента теплопроводности увлажняющих связующих смесей

Другим типичным применением плоского измерительного оборудования является определение коэффициента теплопроводности увлажняющих связующих смесей. Во время гидратации происходят значительные изменения значения теплопроводности гидратирующего материала. Эти изменения частично вызваны превращением несвязанной водяной воды в структуру вновь образованных продуктов гидратации, а также развитием и изменением внутренней микроструктуры материалов.

Гидратация испытуемого образца происходит в изолирующем термокамере, чтобы изолировать данную систему, по крайней мере, частично от внешней среды, во-первых, от резких изменений внешней температуры. Испытуемый образец упаковывали в тонкую полиэтиленовую фольгу, чтобы предотвратить испарение воды в партии во время измерения и отделить испытательный зонд от агрессивного материала связующего. Во время измерения необходимо было выполнить два следующих условия.

  • ограждающая конструкция имеет однородное монолитное строение;
  • используемые стройматериалы имеют естественную влажность.

При проектировании необходимые нормируемые и справочные данные берутся из нормативной документации:

  • СНиП23-01-99 – Строительная климатология;
  • СНиП 23-02-2003 – Тепловая защита зданий;
  • СП 23-101-2004 – Проектирование тепловой защиты зданий.

Изменение температуры от измерительного зонда не должно влиять на ход гидратации цементной смеси. Цементная смесь должна находиться в неподвижном температурном состоянии в течение всего времени измерения. Очевидно, что во время гидратации связующего происходит существенное изменение значения коэффициента теплопроводности. Более пристальное рассмотрение курса кривой коэффициента теплопроводности, очевидно, показывает, что на начальном этапе гидратация имитирует с определенной фазовой задержкой интенсивность курса гидратация тепловыделения.

Основные параметры, от которых зависит величина теплопроводности

Не все строительные материалы одинаково теплоэффективны. На это влияют следующие факторы:

Пористая структура материала говорит о том, что подобное строение неоднородно, а поры наполнены воздухом. Тепловые массы, перемещаясь через такие прослойки, теряют минимум своей энергии. Поэтому пенобетон именно с замкнутыми порами считается хорошим теплоизолятором.
Замкнутые поры пенобетона наполнены воздухом, который по праву считается лучшим теплоизолятором
Повышенная плотность материала гарантирует более тесную взаимосвязь частиц друг с другом. Соответственно, уравновешивание температурного баланса происходит намного быстрее. По этой причине плотный материал обладает большим коэффициентом проводимости тепла. Поэтому железобетон считается одним из самых «холодных» материалов.
Высокая плотность даёт хорошую прочность железобетону, но также и «обделяет» его теплоэффективностью
Влажность – злокачественный фактор, повышающий скорость прохождения тепла

Поэтому так важно качественно произвести гидроизоляцию необходимых узлов здания, грамотно организовать вентиляцию и использовать максимально инертные к намоканию строительные материалы.


«Холодно, холодно и сыро. Не пойму, что же в нас остыло…» Даже Согдиана знает о том, что сырость и холод − вечные соседи, от которых не спрячешься в тёплом свитере

Зная, что такое проводимость тепла, и какие факторы на неё влияют, можно смело пробовать применять свои знания для расчётов будущих строительных конструкций. Для этого нужно знать коэффициенты используемых материалов.

Коэффициент теплопроводности строительных материалов – таблицы

Теплоизоляционные свойства материалов прекрасно демонстрируют сводные таблицы, в которых представлены нормативные показатели.

Таблица коэффициентов теплоотдачи материалов. Часть 1

Проводимость тепла материалов. Часть 2Таблица теплопроводности изоляционных материалов для бетонных полов

Но эти таблицы теплопроводности материалов и утеплителей учли далеко не все значения. Рассмотрим подробнее теплоотдачу основных строительных материалов.

Таблица теплопроводности кирпича

Как уже успели убедиться, кирпич – не самый «тёплый» стеновой материал. По теплоэффективности он отстаёт от дерева, пенобетона и керамзита. Но при грамотном утеплении из него получаются уютные и тёплые дома.

Сравнение теплопроводности строительных материалов по толщине (кирпич и пенобетон)

Но не все виды кирпича имеют одинаковый коэффициент теплопроводности (λ). Например, у клинкерного он самый большой – 0,4−0,9 Вт/(м·К). Поэтому строить из него что-то нецелесообразно. Чаще всего его применяют при дорожных работах и укладке пола в технических зданиях. Самый малый коэффициент подобной характеристики у так называемой теплокерамики – всего 0,11 Вт/(м·К). Но подобное изделие также отличается и большой хрупкостью, что максимально минимизирует область его применения.

Неплохое соответствие прочности и теплоэффективности у силикатных кирпичей. Но кладка из них также нуждается в дополнительном утеплении, и в зависимости от региона строительства, возможно, ещё и в утолщении стены. Ниже приведена сравнительная таблица значений проводимости тепла различными видами кирпичей.

Теплопроводность разных видов кирпичей

Таблица теплопроводности металлов

Теплопроводность металлов не менее важна в строительстве, например, при выборе радиаторов отопления. Также без подобных значений не обойтись при сварке ответственных конструкций, производстве полупроводников и различных изоляторов. Ниже приведены сравнительные таблицы проводимости тепла различных металлов.

Теплоэффективность разных видов металлов. Часть 1Теплоэффективность разных видов металлов. Часть 2Теплоэффективность разных видов металлов. Часть 3

Таблица теплопроводности дерева

Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы. Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м∙С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств. Ниже представлены таблицы теплопроводности и прочности различных пород.

Проводимость тепла дереваПрочность разных пород древесины

Таблица проводимости тепла бетонов

Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят фундаменты и ответственные узлы зданий с последующим утеплением, из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.

Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материалов

Наиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.

Какой коэффициент теплопроводности у воздушной прослойки

В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу

Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины. Таблица проводимости тепла воздушных прослоек

Таблица проводимости тепла воздушных прослоек

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий