Схема как из 380 сделать 220 Вольт
Существует несколько вариантов, как из 380 сделать 220 Вольт. Схемы таких соединений должны быть известны любому опытному электромонтёру:
- Подключить однофазную нагрузку к фазному и нулевому проводам. Нейтральный проводник обычно имеет меньшее сечение, или для их поиска в четырёхжильном кабеле можно использовать мультиметр. Напряжение между фазными проводами составит 380В, а между фазой и нулём 220В.
- Использовать трансформатор 380/220. Мощность этого устройства должна быть равна или больше мощности подключаемого электроприбора. Достоинство этой схемы в меньшей опасности поражения электрическим током. Вместо обычного трансформатора можно взять автотрансформатор. Этот прибор имеет меньшие габариты, но не защищает от поражения электрическим током.
Цвет фазного и нулевого провода в вводном кабеле
Питающие линии, идущие к дому, могут выполнятся в нескольких вариантах. Все зависит от типа кабеля. Если ввод однофазный выполнен:
- Проводом типа СИП, то фазная жила будет иметь цветную полосу (обычно желтую, зеленую или красную). Нулевая жила черная.
- Кабелем типа АВВГ или ВВГ, то нулевой проводник синий, белый, красный или зеленый — фазный.
- Кабелем типа КГ — фазный провод коричневый, нулевой – синий.
Если ввод трехфазный выполнен:
- Проводом типа СИП и имеется помимо двух основных цветов красного и зеленого, синий и черный провода — нулевой провод будет обязательно черный.
- Кабелем типа АВВГ или ВВГ нулевой проводник будет синий, а один из фазных помимо красного и зеленого будет черный или белый.
- Кабелем типа КГ нулевой – синий, коричневый и два черных – фазные проводники.
Кабельная продукция часто выпускается не по ГОСТу, а по техническим условиям. Поэтому даже в двухжильном СИПе с черной и синей жилой черный провод будет нулевым. В проводе черного цвета заложен стальной сердечник, который выполняет самонесущую функцию провода. Подключение ввода к дому от воздушных линий кабелем типа ВВГ и КГ не рекомендуются.
Проводка внутри дома выполняется только однофазными линиями и медными проводами.
Согласно ПУЭ внутридомовые линии должны прокладываться с заземляющим проводником. Во всех трехжильных проводниках, выполненных по ГОСТу, подходящих для внутренних работ, заземляющий провод — желто зеленый.
Если трехжильный проводник гибкий типа ПВС, то фазный проводник обычно коричневого цвета. Для внутри домовой проводки лучше использовать провода выполненных из литой меди. Если жилы помечают полосами, то жила с полосой любого цвета исключая синий и желто зеленый — фазный. Если в кабеле отсутствует желто-зеленый проводник, в качестве заземляющего провода используют проводник с зеленой полосой. Заземляющий провод может маркироваться чисто желтым цветом. В кабелях, жилы которых окрашены целиком, белый провод – фазный.
Выбор номинальных параметров
Сферу применения и назначение УЗО определяют два ключевых параметра: нагрузочная способность и величина утечки, при которой происходит разрыв цепи. Если дифференциальная защита призвана сократить тяжесть последствий от электротравмы, её номинал выбирается исходя из допустимых значений тока, действующего на организм.
Основные характеристики УЗО
Общая защита кабельных линий электропередач от утечек через изоляцию обеспечивается противопожарными УЗО с уставкой дифференциального тока в 100, 200 или 500 мА. Более точное значение определяется характеристиками кабельной продукции и длиной линии. Чем хуже диэлектрические свойства и выше протяжённость, тем больше суммарное значение утечки. Высокая собственная ёмкость кабеля не вызывает ложных срабатываний, поскольку накопление заряда сопровождается пропорциональной по величине работой тока в обоих проводниках.
Нагрузочная способность УЗО устанавливается с обеспечением запаса надёжности порядка 10–20% в зависимости от режима работы защищенной линии. Выбор номинала точно по значениям действующего тока чреват перегревом устройства, если же запас будет существенно больше — возможно снижение чувствительности. В свою очередь, для дифференциальных автоматов уставка максимального тока и характеристика отключения имеют ключевое значение и определяются требованиями по защите линии от перегрузок.
Автоматы или предохранители перед УЗИП
Чтобы сохранить в доме бесперебойное электроснабжение, необходимо также установить автоматический выключатель, который будет отключать узип. Установка этого автомата обусловлена также тем, что в момент отвода импульса, возникает так называемый сопровождающий ток.
Он не всегда дает возможность варисторному модулю вернуться в закрытое положение. Фактически тот не восстанавливается после срабатывания, как по идее должен был.
В итоге, дуга внутри устройства поддерживается и приводит к короткому замыканию и разрушениям. В том числе самого устройства.
Автомат же при таком пробое срабатывает и обесточивает защитный модуль. Бесперебойное электроснабжение дома продолжается.
При этом многие специалисты рекомендуют ставить в качестве такой защиты даже не автомат, а модульные предохранители.
Объясняется это тем, что сам автомат во время пробоя оказывается под воздействием импульсного тока. И его электромагнитные расцепители также будут под повышенным напряжением.
Это может привести к пробою отключающей катушки, подгоранию контактов и даже выходу из строя всей защиты. Фактически вы окажетесь безоружны перед возникшим КЗ.
Поэтому устанавливать УЗИП после автомата, гораздо хуже, чем после предохранителей.
Есть конечно специальные автоматические выключатели без катушек индуктивности, имеющие в своей конструкции только терморасцепители. Например Tmax XT или Formula A.
Однако рассматривать такой вариант для коттеджей не совсем рационально. Гораздо проще найти и купить модульные предохранители. При этом можно сделать выбор в пользу типа GG.
Они способны защищать во всем диапазоне сверхтоков относительно номинального. То есть, если ток вырос незначительно, GG его все равно отключит в заданный интервал времени.
Есть конечно и минус схемы с автоматом или ПК непосредственно перед УЗИП. Все мы знаем, что гроза и молния это продолжительное, а не разовое явление. И все последующие удары, могут оказаться небезопасными для вашего дома.
Защита ведь уже сработала в первый раз и автомат выбил. А вы об этом и догадываться не будете, потому как электроснабжение ваше не прерывалось.
Поэтому некоторые предпочитают ставить УЗИП сразу после вводного автомата. Чтобы при срабатывании отключалось напряжение во всем доме.
Однако и здесь есть свои подводные камни и правила. Защитный автоматический выключатель не может быть любого номинала, а выбирается согласно марки применяемого УЗИП. Вот таблица рекомендаций по выбору автоматов монтируемых перед устройствами защиты от импульсных перенапряжений:
Если вы думаете, что чем меньше по номиналу автомат будет установлен, тем надежнее будет защита, вы ошибаетесь. Импульсный ток и скачок напряжения могут быть такой величины, что они приведут к срабатыванию выключателя, еще до момента, когда УЗИП отработает.
И соответственно вы опять останетесь без защиты. Поэтому выбирайте всю защитную аппаратуру с умом и по правилам. УЗИП это тихая, но весьма своевременная защита от опасного электричества, которое включается в работу мгновенно.
Каков же принцип работы
Якорь трёхфазного асинхронного двигателя, исполненный подобным образом, приводится во вращение благодаря эффекту возникновения переменного магнитного поля в статорных катушках. Чтобы понять, каким образом это происходит, необходимо вспомнить физический закон самоиндукции. Он гласит, что вокруг проводника, по которому проходит поток заряженных частиц, возникает магнитное поле. Величина его будет прямо пропорциональна индуктивности провода и интенсивности протекающего в нём потока заряженных частиц. Кроме того, это магнитное поле формирует силу с определённой направленностью. Именно она нас и интересует, так как является причиной вращения ротора. Для эффективной работы двигателя необходимо иметь мощный магнитный поток. Создаётся он благодаря специальному способу монтажа первичной обмотки.
Известно, что источник питания имеет переменное напряжение. Следовательно, магнитное поле вокруг статора будет иметь такую же характеристику, напрямую зависящую от изменения тока в подающей сети. Примечательно то, что каждая фаза смещена одна относительно другой на 120˚.
Габариты
Базовые размеры трактора Т-25 следующие:
- длина с оборудованием – 2818-3028 мм;
- ширина – 1370 мм;
- размер базы – 1775 мм;
- дорожный просвет – 308-515 мм;
- колея ведущих и направляющих колес – 1100-1500 и 1200-1400 мм;
- размеры трактора Т-25 с кабиной – 3180/1472/2477 мм.
Весит базовая модель 1782 кг. Масса возрастает или снижается в зависимости от диаметра установленных шин. Например, при установке в трактор Т-25 колес размером 10-28, вес увеличивается до 1820 кг. Модификация Т-25А весит столько же и имеет сопоставимые габаритные размеры.
Исходя из модификации техники, менялись и ее параметры. Длина модели с грузом и гидронавесным механизмом при размере колес 9,5/32 равна 3110 мм. Если на тракторе Т-25 задействовали шины, размером 10,00/28, то длина составляла 3098 мм.
Ширина модели с покрышками 9,5/32 при низкой колее равна 1370 мм. При задействовании резины 10,00/28, ширина увеличивается до 1467 мм. Высота техники с кабиной любого типа с шинами 9,5/38 составляет 2500 мм. С резиной 10,00/28 возрастает до 2488 мм.
Параметры колеи колес колеблются от 1200-1400 мм. Размер колеи задних шин трактора Т-25 с резиной 9,5/32 оставляет – от 1100-1500 мм, с покрышками 10,00/28 – от 1200 до 1480 мм. Технический просвет с использованием резины 9,5/32 равен 657 мм, с шинами 10,00/28 – 645 мм. При стандартной накладке просвет с резиной 9,5/32 равен 587 мм, с покрышками 10,00/28 – 575 мм. При минимальной накладке просвет уменьшится до 450 мм с колесами 9,5/32 и до 438 мм с резиной 10,00/28.
Как выполнить проверку?
Проверка может производиться несколькими способами. Целесообразность выбора того или другого варианта осуществляется в зависимости от параметров электрической сети и задач, которые необходимо решить. Так чередование можно узнать при помощи фазоуказателя, мегаомметра, мультиметра или по расцветке изоляции кабеля. Рассмотрите каждый из вариантов более подробно.
С помощью фазоуказателя
По принципу действия, фазоуказатель можно сравнить с обычным асинхронным двигателем. Рассмотрим в качестве примера наиболее распространенную модель фазоуказателя — ФУ-2 .
Рисунок 3: Принципиальная схема работы ФУ-2
Как видите на рисунке 3, у указателя последовательности фаз присутствуют три обмотки, которые подсоединяются к одноименным фазам в сети или устройстве. Между обмотками находится вращающийся ротор Р, который приводит в движение диск фазоуказателя Д.
На практике, после подсоединения к зажимам фазоуказателя соответствующих проводов, работник нажимает кнопку К, которая замыкает цепь обмоток. В зависимости от порядка чередования фаз, диск Д начнет вращаться по часовой или против часовой стрелки.
На самом приборе имеется стрелка, показывающая прямое чередование. Если при нажатии кнопки диск вращается в том же направлении, что и показано стрелкой, то эта трехфазная нагрузка имеет прямое чередование. Если диск начнет крутиться в противоположную от стрелки сторону, то чередование фаз обратное. Следует отметить, что этот прибор не способен определить, какая фаза на каком проводе находится, он может определить лишь порядок их чередования.
С помощью мегаомметра
Как один из способов прозвонки жил широко используется прибор для измерения сопротивления – мегаомметр.
Рис. 4: Прозвонка кабеля мегаомметром
Посмотрите на рисунок 4, для реализации такой схемы, вам понадобится отключить кабель от сети и от потребителя. При этом, с одного конца кабеля фазы поочередно соединяются с землей З, как и металлическая оболочка у бронированных кабелей. С другой стороны присоединяется мегаомметр М, один из зажимов которого заземляется, а второй поочередно подводится к каждой из фаз. На той, где мегаомметр покажет нулевое сопротивление, и будет одним проводом.
На концах одноименного провода устанавливается соответствующая маркировка. Недостатком такого способа прозвонки является большой объем трудозатрат. Так как каждая жила заземляется поочередно, после чего выполняется проверка. При этом на обоих концах кабеля должны устанавливаться ответственные сотрудники. Между ними должна обеспечиваться связь, для согласования действий и предупреждения подачи напряжения на работников.
По расцветке изоляции жил
Если в каком-либо устройстве имеется подключение разноцветными жилами, то фазировку оборудования можно выполнять по цветам. Для определения нахождения одноименных напряжений тех или иных фаз необходимо добраться до каждой жилы кабеля. Если на каждом проводе присутствует изоляция разных цветов, то сравнив их с местом присоединения к трансформатору или распедустройству, можно определить, где какая фаза находится.
Недостатком такого метода следует отметить ложную цветовую маркировку, так как производитель кабеля не всегда обеспечивает один и тот же цвет для каждой жилы на всей протяженности провода. Поэтому предварительно его все равно рекомендуется прозванивать и маркировать.
При помощи мультиметра
Для этого метода используется обычный мультиметр. Он наиболее актуален в тех ситуациях, когда необходимо включить в параллельную работу два смежных устройства и их шины расположены поблизости.
Рис. 5: фазировка мультиметром
Необходимо выполнить сравнение фазных напряжений в соседних линиях, на рисунке 5 приведен пример для фаз А и А1. Коммутационная аппаратура при этом должна быть разомкнута. Перед тем как пользоваться мультиметром, на нем выставляется класс напряжения, для линии, на которой будет производиться замер. Щупы подводятся к выводам фаз, при этом их изоляция должна обеспечивать защиту от напряжения, а на руки надеваются диэлектрические перчатки.
Если при подключении щупов к выводам A — A1 стрелка останется на нулевой отметке, то это значит, что фазы одинаковые. Если стрелка отклонится на величину линейного напряжения, вы меряете разноименные фазы.
Преимущества подключения трехфазного двигателя к сети 220 В через ПЧ
Подключение через частотный преобразователь позволяет отказаться от внешних конденсаторов. Устройства позволяют задавать оптимальную емкость для старта и корректной работы привода. Преобразователи частоты:
- Осуществляют регулирование скорости и момента. При этом конденсаторные схемы работают только в односкоростном режиме.
- Обеспечивают оптимальный режим пуска, разгона и остановки. Преобразователь частоты огранивает пусковые токи, позволяет задавать время разгона и торможения.
- Защищают двигатель от перегрева, перегрузок, коротких замыканий, заклинивания вала. ПЧ отключает привод при возникновении аварий и ненормальных режимов работы.
- Позволяют подключать внешние датчики, а также удаленное оборудование. При помощи преобразователя частоты можно регулировать производительность насосов, другого оборудования по заданным программам.
- Выводят сообщения с кодом ошибки. При аварии или отклонении режима работы привода от нормы, на дисплей ПЧ выводится код, позволяющий определить причину без диагностики двигателя.
К недостаткам подключения 3 фазного двигателя через преобразователь частоты относят завышенную мощность устройства и генерацию паразитных гармоник. Кроме того, при применении старых двигателей, длительно бывших в эксплуатации, сложно определить фактические параметры электрической машины и правильно выбрать ПЧ.
Контактные соединения
Контактные соединения электрических цепей выполняются в соответствии с В зависимости от климатического исполнения и категории размещения электротехнических устройств соединения подразделяются на группы А и Б. Климатические исполнения У, УХЛ для категории размещения 3 (что соответствует условиям МКС) относятся к группе А.
Таким образом, все требования ГОСТ 10434-82 к контактным соединениям применительно к МКС должны соответствовать классу 1 и группе А.
По конструктивному исполнению контактные соединения подразделяются на:
Соединение плоских контактных поверхностей (шин прямоугольного сечения или наконечников с плоскими выводами электротехнических устройств), выполненных из меди и ее сплавов или из твердых алюминиевых сплавов, не требуют применения средств стабилизации и выполняются при помощи стальных крепежных изделий, защищенных от коррозии. Допускается применение вороненых стальных болтов, гаек и шайб.
Настройка работы
Теперь как проверить, что мы всё подключили правильно? Нужно действовать пошагово:
- Без участия РКФ (его выходные контакты пока замыкаем) запускаем компрессор, и убеждаемся, что его двигатель вращается в правильном направлении. Если двигатель крутится не в ту сторону, сразу же вырубаем питание и… звоним знакомому электрику)))
- Убеждаемся, что при данном подключении (правильной последовательности фаз) реле контроля фаз правильно на него реагирует. То есть, нет никаких ошибок, а выходное реле включено (горит желтый индикатор). Если чередование нарушено (индикаторы моргают поочередно), нужно поменять местами любые два провода на входных клеммах 1, 3, 6.
- Подключаем выходные клеммы в цепь управления, ещё раз включаем компрессор, проверяем его работу, и получаем профит.
Назначение и функции
Данная технология применяется в сети трехфазных нагрузок. Наиболее востребована для защиты электродвигателя синхронного или асинхронного, трехфазных станков высокой точности, технологичной электроники, насосов. Заметьте, что неправильное чередование фаз приведет к низкой эффективности его работы, перегреву и снижению уровня изоляции, что может привести к пробою.
Применяется для следующих целей:
Для коммутации преобразовательного оборудования, которому важно соблюдение последовательности фаз: источников питания, выпрямителей, инверторов и генераторов; Для систем АВР (введения в работу резервных источников питания) или подключения системы аварийного освещения; Для специального оборудования – станков, крановых установок, мощность которых составляет не более 100 кВт; Для электроприводов трехфазных двигателей, имеющих мощность не более 75 кВт. Для коммутации однофазной нагрузки данное устройство не используется
Для коммутации однофазной нагрузки данное устройство не используется.
В целом реле контроля фаз применяется для различного промышленного и бытового оборудования и является обязательным предохранителем для тех схем управления, в которых требуется постоянный мониторинг величины напряжения и других параметров внешних линий.
В трехфазных сетях осуществляет контроль:
- уровня напряжения, реализуемая, в преимущественном большинстве, для оборудования такого класса в случаях, когда его величина выходит за установленные пределы;
- чередования фаз – выполнит коммутацию в случае аварийного слипания фаз или при их неверном расположении относительно питающих вводов оборудования;
- пропадания фазы – производит отключение потребителя в случае обрыва фазы и последующего отсутствия напряжения;
- перекоса фаз – производит коммутацию в случае изменения фазного или линейного напряжения по отношению к номинальному значению.
Преимущества реле контроля фаз
В сравнении с другими устройствами аварийных отключений данные электронные реле отличаются рядом весомых преимуществ:
- в сравнении с реле контроля напряжения не зависит от влияния ЭДС питающей сети, так как его работа отстраивается от тока;
- позволяет определять аномальные скачки не только в трехфазной сети питания, но и со стороны нагрузки, что позволяет расширить спектр защищаемых компонентов;
- в отличии от реле, работающих на изменение тока в электродвигателях, данное оборудование позволяет фиксировать еще и параметр напряжения, обеспечивая контроль по нескольким параметрам;
- способно определить дисбаланс уровней питающих напряжений из-за неравномерности загрузки отдельных линий, что чревато перегревом двигателя и снижением параметров изоляции;
- не требует формирования дополнительной трансформации со стороны рабочего напряжения.
В отличии от реле, работающих только по напряжению обеспечивает действующую защиту от регенерированного напряжения, вырабатываемого обратными ЭДС. В случае, когда одно из фазных напряжений пропадает, двигатель продолжает набирать достаточный уровень энергии с остающихся двух. При этом в обесточенной фазе будет генерироваться ЭДС от вращения ротора, который продолжает крутиться от двух фаз в аварийном режиме.
Из-за того, что контакторы электродвигателей не размыкаются от реле при такой работе, возникает риск повреждения электрической машины с ее дальнейшей поломкой. Реле контроля, в свою очередь, способно обнаружить смещение фазового угла, за счет чего обеспечивается полноценная защита.
Такая функция особенно актуальна, когда рабочий режим двигателя, в случае его реверсивного вращения, способен повредить вращаемый элемент или травмировать работника. Как правило, такая ситуация возникает при внесении изменений во время обесточивания электрической машины, смене фазных нагрузок, порядка чередования фаз и прочих.
Что такое обходная система шин или как прожить без форс-мажорных ситуаций?
Представим ситуацию, что одна из цепей была повреждена или замечены сбои в секции шин, нарушается работа целой системы. Нормально функционировать энергооборудование уже не может, поэтому необходимо проводить ремонтно-профилактические работы, выполнять диагностику цепи. И в таких форс-мажорных случаях при работе секций шин и системы шин в выигрыше остаются собственники объектов с обходной системой шин. В чем ее преимущества?
- Обходная система шин обеспечивает нормальную коммутацию на подстанциях, когда идет присоединение к распределительным устройствам нескольких систем, которые функционируют либо одновременно, либо попеременно.
- Обходная система шин обеспечивает должную защиту секций шин, позволяет переводить систему в ремонтный режим. А это значит, что когда одна из систем отключается или аварийно выходит из строя, то на подстанции срабатывает резервное подключение, то есть вступает в действие обходная система шин.
- Обходная система шин переводит в резерв не существующие две системы шинопроводов, а стандартные выключатели любого из имеющихся присоединений. И это становится возможным благодаря продуманным подключениям обходной системы к каждому присоединению через разъединитель.
Таким образом, становится понятнее, что ж такое система шин. Это понятие является широким в энергосистеме, так как существует несколько типов и видом систем шин, а все они могут секционироваться, то есть разделяться на секции шин распределительных устройств
И это свойство очень важное и полезное, так как при сегментации шин удается обеспечить подстанции большую надежность. И когда степень секционирования НКУ такова, что позволяет выделить поврежденный участок в системе шин, провести ремонтные работы, оставляя при этом в работе часть присоединений
Работа устройств со специфической подвижной частью
Привычным вариантом роторного узла трехфазного асинхронного электродвигателя является короткозамкнутый типа «беличья клетка», который набирается из стальных пластин. Когда существует необходимость снизить номинал пусковых токов с возможностью регулирования частоты вращения, тогда используется фазный ротор. Характерной его особенностью являются две группы выводов:
- Статорная. Классический клеммный блок, на который подводится напряжение сети (380 или 220В),
- Роторная. Дополнительный клеммник для выводов обмоток фазного ротора, к которым подключаются контакты реостата (блока сопротивлений).
Последний необходим для плавного пуска с постепенным включением/отключением отдельных сопротивлений в обмоточной цепи фазного ротора.
Порядок установки шины и обслуживание
Монтируется шина трехфазная достаточно просто, однако при ее установке потребуется учитывать некоторые нюансы.
При монтаже случается, что неизолированная часть гребенки не полностью входит в обжимы контакта. Чтобы избежать этого нарушения, имеющийся в ее конструкции пластиковый изолятор, слегка выдающийся наружу, потребуется расположить выступом в сторону винтового крепления. Если этого не сделать, получится не очень аккуратное соединение с частично оголенной плоскостью, лишенное плавности линий изгиба.
При монтаже 3-х фазных гребенок расположению изоляторов уделяется особое внимание, поскольку нарушение этого правила чревато опасным межфазным замыканием. При установке соединительных шин, объединяющих клеммы УЗО и трехфазных автоматов, обязательно соблюдение оговоренной в нормативах маркировки
Она имеется на корпусах приборов и указывает порядок расположения фаз
При установке соединительных шин, объединяющих клеммы УЗО и трехфазных автоматов, обязательно соблюдение оговоренной в нормативах маркировки. Она имеется на корпусах приборов и указывает порядок расположения фаз.
Подсоединение вилочной гребенки
В открытую продажу гребенки поступают в виде линеек, уже отмеренных по стандартному размеру с различным количеством монтажных контактов-шипов. Непосредственно перед подключением трехфазных автоматов подсчитывается их общее количество и с учетом толщины модуля от шины отрезается излишки. Возможны ситуации, когда в распределительном шкафу в одной линейке объединяются приборы различного класса (трехфазные 3-х полюсные АВ и 4-х полюсные УЗО). Монтаж перемычек из меди в этом случае несколько усложняется, так как в районе подводки к автоматам их шипы нужно будет слегка отогнуть в сторону.
При профилактическом обследовании элементов распределительных шкафов особое внимание обращается на соединительные шинки в месте фиксации их отводов в гнездах автоматов. Со временем от значительных токовых нагрузок в зоне контакта металл нагревается, что проявляется в образовании характерного потемнения
В течение длительной эксплуатации это место просто обугливается и покрывается черным нагаром, что нередко приводит к утончению и резкому снижению проводимости перемычек.
Соединительная трехфазная гребенка, используемая для объединения по входу автоматических выключателей и УЗО – очень надежный способ получения единого конструктивного блока. Линейки из нескольких разнотипных модулей при наличии надежной соединительной шины устанавливаются не только в распределительных шкафах закрытого типа. Такую конструкцию допускается монтировать в любом другом месте внутри дома, хорошо защищенном от непогоды и отведенном специально для этих целей.
Достоинства и недостатки
Преимуществами использования 3-хфазной шины из медных соединителей считаются:
- простота конструкции, существенно сокращающая время монтажа всего распределительного шкафа;
- надежный электрический контакт между клеммами отдельных модулей;
- двойное сокращение числа соединений, заметно повышающее эксплуатационную надежность всей конструкции.
Последнее объясняется тем, что при установке типовых проволочных перемычек на один фазный зажим приходится два очищенных от изоляции контактных конца. При использовании же трехфазной гребенки к каждой из фаз подсоединяется всего один отвод.
К недостаткам применения таких соединителей относят:
- неудобство обновления трехфазных автоматов или УЗО, так как в этом случае придется снимать целиком всю гребенку;
- невозможность увеличения общего количества приборов в линейке. Для этого потребуется шина большей размерности.
- при монтаже потребуется подбирать однотипные автоматы, поскольку к различным приборам одна и та же гребенка может просто не подойти.
Профессионалы предлагают простое решение проблемы добавления новых приборов к уже имеющимся на дин-рейке образцам. Для этого следует заранее установить на крепежную планку пару резервных устройств с самыми «ходовыми» номиналами 16 и 25 Ампер и подключить только их верхние контакты (нижние клеммы останутся в резерве). Все это время коммутирующие механизмы автоматов остаются в выключенном состоянии.
Классические схемы подключения защиты от импульсов перенапряжения
Перед установкой в сети электропитания УЗИП необходимо осуществить монтаж контура заземления здания или убедится в его наличии и полном соответствии требованиям ПУЭ. Желательно пригласить контрольно-измерительную лабораторию для проверки соответствия основных технических параметров цепей проводки и заземления:
- Сопротивления петли фаза – ноль;
- Сопротивления заземляющего контура;
- Сопротивления изоляции проводников и другие технические характеристики.
При монтаже контура заземления учитывается много факторов, структура грунта, материал и геометрические формы заземлителей и шин, это требует детального рассмотрения в отдельной статье.
Большое роль имеет функциональное назначение здания или сооружения, какое оборудование в нем эксплуатируется, в зависимости от этого выдвигаются различные требования к заземлению:
- Для объектов с аппаратурой связи сопротивление растеканию токов должно не более 4 Ом. Для надежного срабатывания разрядников в цепях защиты воздушных линий связи не более 2 Ом;
- На трансформаторных подстанциях по требованиям ПУЭ (1.7.101) не более 4 Ом;
- В контурах заземления для молниеотводов не более 10 Ом (РД 34.21.122-87, п. 8);
- Для жилых домов и административных зданий с сетями 380 или 220 В с локальным заземлением по системе TN-C-S сопротивление растекания не более 30 Ом, ПУЭ (1.7.103).
Обратите внимания, что в цепи УЗИП иногда ставят плавкие предохранители, это повышает вероятность эффективной защиты. Особенности этого стандарта схемы заземления в том, что на входе Нейтральная шина соединяется с шиной контура заземления.
Существуют и другие стандарты подключения заземления
В данном случае шины заземления и нейтрали разделены, не имеют общего контакта
В схемах стандарта TN—S фаза и нейтраль к УЗИП подключаются через защитные автоматы
В современных сетях проводки чаще всего применяют стандарты заземления TN-C-S, но на некоторых объектах встречаются схемы стандарта TN-C.
На схеме стандарта TN-C показаны два варианта подключения УЗИП слевой стороны Т – образное подключение и с правой стороны V – образное. Считается что вариант V эффективней снижает импульсы перенапряжения и скорость срабатывания повышается.
Форма выводов
Наиболее распространены гребенчатые шины со штыревыми отводами (гребенки типа pin). Англоязычное название — pin. Они подходят к большинству современных автоматических выключателей. Выводы у таких шин сложнее погнуть при транспортировке. Поэтому во время монтажа возникает меньше проблем с установкой в отверстия автоматических выключателей.
Второй вид отводов — вилкообразный (тип fork). Используются сравнительно реже. Подходят не ко всем образцам современного оборудования. Соединительные шины с вилкообразными выводами не рекомендуется использовать для мощных нагрузок. Обычно их ставят в щиток с максимальным током до 63 А.