Как определить качество электроэнергии — нормы и параметры оценки

Правильность учёта

Правильность учёта потребляемой электроэнергии на каждой отдельной линии важна в плане общего её учёта и исправной работы всей системы. Поэтому нарушения здесь недопустимы. Различные ухищрения, к которым прибегают некоторые недобросовестные потребители, в ходе поверки выявляются. Несоответствие между подачей и потреблением обязательно будет обнаружено.

На поверку счетчик может сниматься, либо проверяться прямо на месте. При этом определяется его исправность и наличие вмешательства в его функционирование. Вариантов повлиять на работу дискового счетчика больше, чем на работу современного электронного. Просверливание тонких отверстий для засовывания иглы, разбитие стекла для засовывания фотоплёнки – давно известные способы, призванные затормозить диск, уменьшить количество его оборотов и тем самым снизить количество потребляемых кВт. Возможно также подключение «левой» замаскированной проводки, ослабление винта напряжения и другие способы воровства. Всё это будет выявлено даже постфактум, когда уже не используется. А дальше идёт проверка электротехнической исправности.

Характеристики отдельного источника питания системы качества электроэнергии для трехфазной 4-проводной системы переменного тока

Простейшая схема, позволяющая получить различные уровни качества электроэнергии для однофазной нагрузки, показана на рис. 7. Система может выдавать 3 уровня качества электроэнергии на однофазную нагрузку при использовании трёхфазной 4-проводной системы переменного тока, одного преобразователя и аккумуляторных батарей. Этот центр управления качеством подобен изображённому на рис. 3 и является его однофазной версией. Устройство имеет несколько рабочих режимов.

Обычный режим работы. Система компенсирует трёхфазную асимметрию и гармоники напряжения, возникающие из-за нагрузки, а также токи гармоник нагрузки. Если имеется обратная мощность, генерируемая на стороне нагрузки, она накапливается в аккумуляторной батарее.

Режим компенсации кратковременных просадок напряжения. Кратковременные просадки напряжения в линиях наивысшего и высокого качества компенсируются добавлением реактивной мощности от преобразователя. Кратковременные просадки напряжения в линии нормального качества не компенсируются. Номинальный ток линии нормального качества может быть меньше, чем для других фаз, потому что эта линия не должна обеспечивать реактивный ток для компенсации кратковременных просадок напряжения.

Режим ИБП. Во время работы ИБП работает только линия наивысшего качества преобразователя, транзисторы двух других фаз закрыты. Преобразователь действует как ИБП параллельного типа, и энергия поступает от аккумуляторной батареи.

Таблица 7. Определение качества электроэнергии для центра управления качеством рис. 7

События Нормальное качество Высокое качество Наивысшее качество
Повышенное и пониженное напряжение О О О
Кратковременные просадки напряжения Х О О
Выбросы напряжения Х О О
Сдвиг фаз Х Х О
Скачки Х О О
Кратковременные прерывания Х Х О
Временные прерывания Х Х О
Длительные перерывы Х Х Х
Переходные процессы Х Х Х
Трёхфазная асимметрия напряжения Δ Δ Δ
Гармоники напряжения Δ Δ Δ
Гармоники тока О О О

Подробная конфигурация экспериментального устройства приведена на рис. 8. Основными компонентами конфигурации являются трёхфазный преобразователь, аккумуляторные батареи и тиристорный ключ в фазе с энергией наивысшего качества. В качестве контроллера, показанного на рис. 8, используется цифровой сигнальный процессор ЦСП. В обычном рабочем режиме трёхфазный ток преобразуется в координаты d-q. Измеряются и компенсируются обратная последовательность, нулевая последовательность и компоненты гармоник токов нагрузки. В режиме компенсации кратковременных просадок напряжения реактивная мощность для компенсации напряжения подаётся в фазы А и В. В режиме ИБП преобразователь становится обычным источником напряжения и работает только одна фаза А.

На рис. 9 показана компенсация асимметрии тока и симметрия вторичного тока. К линиям наивысшего и высокого качества подключена активная нагрузка 2,3 кВт, к линии нормального качества подключена активная нагрузка 1,3 кВт. Коэффициент асимметрии тока после компенсации – 4,0%. На рис. 10 показана компенсация кратковременных просадок напряжения на линиях наивысшего и высокого качества.

На рис. 11 показаны экспериментальные результаты работы ИБП. Время прерывания питания равно 200 мс. Отсутствие трёхфазного напряжения на первичной стороне компенсируется только в фазе А. Вся энергия на нагрузку фазы А поступает от батареи.

На рис. 12 показана обработка потока обратной мощности от нагрузок, генерирующих электроэнергию (распределенного генератора). Для моделирования распределённого генератора использовался источник тока. К фазам А и В подключена активная нагрузка 1 кВА. К фазе С подключен источник синусоидального тока 50 А (амплитуда) со сдвигом фазы относительно напряжения на 180º. Мощность распределённого генератора больше мощности нагрузок, подключенных к фазам А и В, поэтому будет поток обратной мощности, если не будут приняты меры для его блокирования. Нулевой вторичный ток на рис. 12 свидетельствует о том, что поток обратной мощности отключен от центра управления качеством и заряжает аккумуляторную батарею.

Для системы электроснабжения с разделением потребителей по требованиям к качеству электроэнергии важно определение уровней качества электроэнергии. Аспекты качества электроэнергии, как мы убедились, делятся на 3 категории: стабильность напряжения, бесперебойность подачи питания и форма напряжения. Согласно трем категориям были рассмотрены примеры определения уровня качества и показаны соответствующие конфигурации центра управления качеством

Согласно трем категориям были рассмотрены примеры определения уровня качества и показаны соответствующие конфигурации центра управления качеством.

Как подготовиться к испытанию прибора

До начала поверки счетчиков на электроэнергию владельцы должны убедиться в классе его точности с помощью сопутствующих документов или маркировки на устройстве. Если класс ниже второго, то «Мосэнергосбыт» обязательно назначит замену, поэтому лучше сделать это до проверки. Если межповерочный интервал в норме, то устройство может оставаться в эксплуатации.

По закону ответственность за своевременную поверку счетчиков электроэнергии без снятия несет собственник. Именно он должен следить за интервалами испытания устройства, вызывать специалистов из центра стандартизации или аккредитованной независимой лаборатории. Нужно понимать, что возможно проведение внепланового осмотра и тестирования без подготовки устройства владельцем в случае подозрения на некорректную работу прибора.

До назначения сроков проведения испытания владелец устройства должен проверить уровень проводки и качество монтажа прибора, после чего согласовать время с представителем «Мосэнергосбыт» или другого уполномоченного проводить работы органа для официального оформления документов. Во время тестирования владелец устройства в обязательном порядке должен предоставить документы на покупку, а также квитанции об оплате электроэнергии.

Способы повышения качества электрической энергии

Для управления качеством электрической энергии необходимо внедрять в структуру систем энергоснабжения:

  1. УКРМ (устройств компенсации реактивной мощности), для гарантированной высокопропускной способности электрической сети в обычном и послеаварийном режиме.
  2. Внедрение в работу силовых трансформаторов с наличием РПН (регулировка под нагрузкой), устройство способно регулировать уровень напряжения в сети при его падении при увеличении нагрузки, или при высоком уровне напряжения, без вывода трансформатора в ремонт.
  3. Применение в сети синхронных компенсаторов, рекомендуется их установка на силовых подстанциях в зависимости от баланса реактивной мощности в рассматриваемом узле.
  4. При напряжении до 1000 В и значениях мощности около 100кВт наиболее выгодно использовать асинхронные двигатели, более 300 кВт – рекомендуется применять синхронные машины, при величине напряжении 6 — 10 кВ– асинхронные машины, свыше 400 кВт – синхронные. Так как синхронные двигатели являются источниками реактивной энергии, целесообразно подключение конденсаторных батарей.
  5. Конденсаторных батарей (БСК) совместно с фильтрокомпенсирующими устройствами.
  6. Использование в сети линейных регуляторов или последовательных трансформаторов для регулировки напряжения в отдельных линиях и вторичных обмотках автотрансформаторов.
  7. Применение автотрансформаторов связи сетей различных номинальных напряжений с РПН, расположенным на линейном конце обмотки среднего напряжения, им можно регулировать под нагрузкой коэффициент трансформации.
  8. Для обеспечения КЭ регуляторы РПН должны работать автоматически, характеризуются устойчивостью работы, зоной нечувствительности, точностью регулирования и выдержкой времени.

Компенсирующие устройства помогают решить такие задачи как:

  1. Оптимизация перетоков индуктивной (реактивной) мощности в высоковольтных сетях.
  2. Сведение к минимуму наличия потерь мощности и энергии.
  3. Поддержание статической и динамической устойчивости в узлах повышенной нагрузки.

Виды защиты от непредсказуемых изменений параметров сети

Приборы для защиты от перепадов напряжения

Энергопоставляющая компания должна заботиться о надлежащем качестве поставляемых услуг, которые соответствуют установленным нормативным документам. Но при этом каждый домовладелец в личном порядке может обезопасить свои бытовые приборы от скачков напряжения специальными видами оборудования:

  • Источники бесперебойной электроэнергии способны поддерживать рабочее состояние некоторых видов бытовой техники в течение заданного времени. Например, подключение к компьютеру такого устройства позволяет корректно завершить его работу и сохранить все требуемые файлы.
  • Оборудование, предназначенное для защиты от перепадов напряжения. Принцип действия подобен работе реле. Если один из параметров электрической цепи достигает критических отметок, помещение автоматически обесточивается.
  • Стабилизатор напряжения контролирует, чтобы величина напряжения не выходила за пределы заданных параметров. Обеспечивает надлежащее качество электроэнергии, но при условии, что отклонения не превышают 35%.

https://youtube.com/watch?v=8Zt8B45-T9k

Многофункциональные измерительные приборы

Современные многофункциональные приборы обеспечивают получение результатов не только в цифровом формате, но и в денежном эквиваленте. Модели отличаются рядом показателей:

  • задачи;
  • область применения;
  • функционал.

Модели нового поколения ускоряют процесс получения значений по прогнозированию, фиксации, устранению и предотвращению возникновения новых проблем в работе системы. С помощью специальных аппаратов, специалисты определяют механические и электрические параметры.

Отсутствие контроля приводит к частым неполадкам, сбоям энергосистемы и чрезмерным расходам электричества. Общего показателя эффективности работы сети недостаточно для проведения глубинного анализа. Большие предприятия обращаются в сертифицированные службы для осуществления контроля над всеми компонентами рабочей зоны.

Важно анализировать нагрузки в динамике. Это позволит выявить уровень износа электросети и своевременно провести мероприятия по устранению потенциальных угроз

При выявлении вины поставщика, потребитель будет лишен необходимости брать на себя обязанность по решению проблем.

Что собой представляет качество электроэнергии?

В сфере энергетики этот термин представляет собой совокупность характеристик. Сегодня электроэнергия является товаром и принимает активное участие в процессах купли-продажи на внутреннем и внешнем рынках. Вполне очевидно, что к ней предъявляются аналогичные требования, что и к любому дорогому предмету товарно-денежных отношений.

Так как электрическая энергия стала незаменима, то к ее качеству предъявляются высокие требования. Однако этот товар уникальный, так как способен менять свои основные свойства за определенную единицу времени. Кроме этого данный товар нельзя обменять либо вернуть продавцу. Также следует помнить, что на качество электроэнергии во многом влияет и уровень потребителя, а не только поставщика.

Рассмотрение основных показателей

Качество электроэнергии определяют уровнем соотношения установленным значениям определенных показателей. Все параметры электрической энергии большую часть времени в сутках (95%) должны соответствовать нормальным установленным значениям и не превышать данный предел.

ГОСТ 13109-87 разделяет показатели качества на два категории: основные и дополнительные. Основные определяют свойства электроэнергии. В данную подгруппу входит 9 характеристик напряжения и 1 характеристика частоты. Рассмотрим ряд основных показателей более подробно.

Отклонение напряжения

. Оказывает наибольшее влияние на работу потребителей. Нагрузки, уровни напряжения и другие параметры способны изменяться во времени. Исходя из этого, значение падения напряжения также является переменным. При этом, значительное снижение напряжения на промышленных предприятиях оказывает негативное воздействие на общую производительность труда, отрицательно сказывается на зрении рабочего персонала. Также, снижение напряжения оказывает влияние на продолжительность большинства технологических процессов в электротермической и электролизной установках. Помимо этого, несоответствие уровня напряжения необходимым значениям приводит к потере напряжения и мощности.

Советуем изучить — Соленоиды — устройство, работа, применение

В сетях до 1 кВ допустимое отклонение напряжения ±5 %, максимальное ±10 %. В сетях 6-20 кВ принята величина максимального отклонения ±10 %.

Размах изменения напряжения.

Этот параметр качества электроэнергии представляет собой разницу между амплитудным или действующим значением перед и после его изменения. Частота повторения данных изменений может быть от 2 раз/мин. до 1 раза/ч. Столь резкие изменения в трехфазной сети могут быть вызваны, к примеру, работой дуговой сталеплавильной печи либо сварочного аппарата. Нормирование колебаний напряжения основывается на необходимости защиты зрения людей. Для каждого вида ламп устанавливается свое отдельное значение размаха. Чтобы обеспечить соблюдение данного показателя качества рекомендуется применять отдельное питание для электроприемников сети освещения и силовых нагрузок.

Доза колебаний напряжения

, которая является аналогом предыдущего показателя качества электрической энергии, они взаимозаменяемы. Нормирование дозы колебаний в электросетях проводится только при наличии в них определенных приборов.

Длительность провала напряжения

. Провалом является резкое уменьшение напряжения, после чего оно обратно восстанавливается до своей изначальной, либо приближенной величины спустя определенный временной промежуток. Длительность провала отражает время от начального момента провала до момента его восстановления. Продолжительность провала может быть как в один период, так и в десятки секунд. Согласно ГОСТ этот параметр может достигать 30 секунд в сетях до 20 000 Вольт.

Импульсное напряжение

схоже по описанию провалу, однако его продолжительность иная, и составляет от нескольких микросекунд до десяти миллисекунд. Допустимые значения данного показателя качества электроэнергии стандартом не нормируется.

Характеристиками напряжения также являются четыре коэффициента: гармонической составляющей, несинусоидальности кривой, нулевой и обратной последовательности.

Характеристикой частоты выступает отклонение. Наибольшее отклонение частоты возникает, если нагрузки изменяются медленным темпом, а резерв мощности невелик. Нормальная допустимая величина отклонения ± 0,2 Герц, максимальная ± 0,4 Герц. В послеаварийных режимах допустим интервал отклонения от + 0,5 до — 1 Герц (не более девяноста часов в году).

Дополнительные показатели качества электроэнергии являются формой записи основных. Сюда входят 3 следующих коэффициента, характеризующих напряжение: амплитудной модуляции, а также небаланса фазных и междуфазных напряжений.

Что входит в проверку качества электроэнергии

Обследование объекта. Перед началом проверки проводится опрос заказчика и изучается техническая документация.

Разработка технического задания. В ТЗ приводят цель, порядок, последовательность и методы проверки КЭ.

Установка приборов учета качества электроэнергии. Приборы помогают снимать показатели электросети во время ее обычной работы.

Отслеживание показателей качества. Параметры КЭ снимают в течение определенного времени, чтобы получить базу данных для дальнейшей оценки.

Оценка качества электроэнергии. Полученные данные сверяются с нормативами, выявляются расхождения и устанавливаются их причины.

Разработка рекомендаций по улучшению качества электроэнергии. Выбранные методы обязательно соответствуют установленным стандартам.

Оформление документации. По итогам проверки заказчику выдают технический отчет, составленный по форме ГОСТ Р 54149-2010.

Измерение параметров качества электроэнергии

Практика эксплуатации энергохозяйства предприятия подтверждает, что с целью организации на предприятии энергоэффективного электроснабжения, необходимо регулярно (не реже раза в год) производить контроль параметров качества поступающей электроэнергии.

Не секрет, что существующие распределительные электрические сети имеют большой физический износ, большая часть трансформаторных подстанций перегружена. Эти и другие факторы приводят к отклонению параметров поступающей в нашу сеть электроэнергии от нормируемых, что приводит к различным негативным факторам в электрической сети. Среди таких факторов — увеличение реактивных токов, снижение уровня питающего напряжения (равно как и чрезмерное увеличение), искажение синусоиды, повышенные гармоники и т.д.

Значительное отклонение параметров качества электроэнергии питающей сети не позволяет эксплуатировать должным образом подключенные к ней электроустановки, а в ряде случаев это вообще запрещено. Так, например, снижение питающего напряжения на обмотках трехфазного электродвигателя приводит к повышению токов, протекающих в его обмотках, что в свою очередь приведет к повышенному нагреву изоляции, и к преждевременному выходу из строя оборудования или к сокращению его номинальной службы.

Снижение питающего напряжения на обмотках трехфазного электродвигателя приводит к повышению токов, протекающих в его обмотках

Для решения этой задачи, с помощью измерительного приборного комплекса необходимо произвести измерение токов и напряжений питающей сети на головном участке схемы, а в дальнейшем, при выявлении значительных отклонений, на всех отходящих фидерах.

Таким образом, в распоряжении энергетической службы предприятия, будут находится как протокол измерений, с указанием всех нормируемых параметров электроэнергии, так и непосредственно интервальные графики нагрузок и мгновенных значений токов и напряжений. Данная информация позволяет принять своевременные как организационные, так и технические мероприятия, позволяющие предотвратить ненормальные (аварийные и предаварийные) режимы работы электрооборудования, а также позволяет снизить величину технических потерь электроэнергии, разгрузить питающие линии электропередач.

Комплекс измерения параметров качества электроэнергии, включает в себя:

  • измерение и регистрация основных показателей качества электроэнергии (ПКЭ), установленных ГОСТ Р 54149-2010;
  • измерение и регистрация электроэнергетических величин, таких как коэффициент мощности (cos φ), провалы напряжения, размах изменений напряжений, параметры временных перенапряжений, действующее значение тока по трем фазам, установившееся значение напряжений и отклонения.

На основании измеренных амплитудных и мгновенных значений напряжений и токов по трем фазам рассчитываются значения полной мощности, активной мощности, коэффициента мощности и ряда других параметров:

  • Действующее значение фазного напряжения (TRMS).
  • Действующее значение линейного напряжения (TRMS).
  • Действующее значение токов (TRMS).
  • Полная мощность.
  • Активная мощность.
  • Коэффициент мощности, по соотношению мощностей или из ряда Фурье.
  • Действующее значение напряжения 1-ой гармоники.
  • Действующее значение токов 1-ой гармоники.
  • Активная мощность первой гармоники.
  • Коэффициент мощности.
  • Коэффициент искажения напряжения.
  • Коэффициент искажения тока.
  • Значения 3,5,7,9-40 гармоник в процентах от U1.
  • Значения 3,5,7,9-40 гармоник в процентах от I1.
  • Провалы.
  • Перенапряжения.
  • Импульсы.
  • Коэффициент несимметрии по обратной последовательности.
  • Частота напряжения

Итогом проведения измерений является протокол показателей качества электроэнергии по полученным данным, в соответствии с ГОСТ, а также график электрических нагрузок с приложением базы данных поинтервальных значений измеренных параметров.

Результатом работ по измерению показателей качества электроэнергии являются графики нагрузок (токовых значений, коэффициентов мощности, напряжения, синусоидальности), а также «Протокол параметров качества электроэнергии».

Пример формы грозовых импульсов

С помощью программного обеспечения измерительного комплекса проводится анализ параметров работы системы электроснабжения, выявляется приближение параметров к границе опасной зоны, что дает возможность эксплуатирующей организации своевременно принять необходимые меры, или обратиться в свою энергоснабжающую организацию с требованием устранить выявленные несоответствия.

Кандидат технических наук С.В. Добров.

Показатели качества электрической энергии

Стандартом устанавливаются следующие показатели качества электроэнергии (ПКЭ):

При определении значений некоторых ПКЭ стандартом вводятся следующие вспомогательные параметры электрической энергии:

Часть ПКЭ характеризует установившиеся режимы работы электрооборудования энергоснабжающей организации и потребителей ЭЭ и дает количественную оценку по КЭ особенностям технологического процесса производства, передачи, распределения и потребления ЭЭ. К этим ПКЭ относятся: установившееся отклонение напряжения, коэффициент искажения синусоидальности кривой напряжения, коэффициент n-ой гармонической составляющей напряжения, коэффициент несимметрии напряжений по обратной последовательности, коэффициент несимметрии напряжений по нулевой последовательности, отклонение частоты, размах изменения напряжения.

Оценка всех ПКЭ, относящихся к напряжению, производится по действующим его значениям.

Для характеристики вышеперечисленных показателей стандартом установлены численные нормально и предельно допустимые значения ПКЭ или нормы.

Другая часть ПКЭ характеризует кратковременные помехи, возникающие в электрической сети в результате коммутационных процессов, грозовых атмосферных явлений, работы средств защиты и автоматики и в после аварийных режимах. К ним относятся провалы и импульсы напряжения, кратковременные перенапряжения. Для этих ПКЭ стандарт не устанавливает допустимых численных значений. Для количественной оценки этих ПКЭ должны измеряться амплитуда, длительность, частота их появления и другие характеристики, установленные, но не нормируемые стандартом. Статистическая обработка этих данных позволяет рассчитать обобщенные показатели, характеризующие конкретную электрическую сеть с точки зрения вероятности появления кратковременных помех.

Для оценки соответствия ПКЭ указанным нормам (за исключением длительности провала напряжения, импульсного напряжения и коэффициента временного перенапряжения) стандартом устанавливается минимальный расчетный период, равный 24 ч.

В связи со случайным характером изменения электрических нагрузок требование соблюдения норм КЭ в течение всего этого времени практически нереально, поэтому в стандарте устанавливается вероятность превышения норм КЭ. Измеренные ПКЭ не должны выходить за нормально допустимые значения с вероятностью 0,95 за установленный стандартом расчетный период времени (это означает, что можно не считаться с отдельными превышениями нормируемых значений, если ожидаемая общая их продолжительность составит менее 5% за установленный период времени).

Другими словами, КЭ по измеренному показателю соответствует требованиям стандарта, если суммарная продолжительность времени выхода за нормально допустимые значения составляет не более 5% от установленного периода времени, т.е. 1 ч 12 мин, а за предельно допустимые значения – 0 % от этого периода времени.

Рекомендуемая общая продолжительность измерений ПКЭ должна выбираться с учетом обязательного включения рабочих и выходных дней и составляет 7 суток .

В стандарте указаны вероятные виновники ухудшения КЭ. Отклонение частоты регулируется питающей энергосистемой и зависит только от нее. Отдельные ЭП на промышленных предприятиях (а тем более в быту) не могут оказать влияния на этот показатель, так как мощность их несоизмеримо мала по сравнению с суммарной мощностью генераторов электростанций энергосистемы. Колебания напряжения, несимметрия и несинусоидальность напряжения вызываются, в основном, работой отдельных мощных ЭП на промышленных предприятиях, и только величина этих ПКЭ зависит от мощности питающей энергосистемы в рассматриваемой точке подключения потребителя. Отклонения напряжения зависят как от уровня напряжения, которое подается энергосистемой на промышленные предприятия, так и от работы отдельных промышленных ЭП, особенно с большим потреблением реактивной мощности. Поэтому вопросы КЭ следует рассматривать в непосредственной связи с вопросами компенсации реактивной мощности. Длительность провала напряжения, импульсное напряжение, коэффициент временного перенапряжения, как уже отмечалось, обуславливаются режимами работы энергосистемы.

В таблице 2.1. приведены свойства электрической энергии, показатели их характеризующие и наиболее вероятные виновники ухудшения КЭ .

Свойства электрической энергии

Показатель КЭ

Наиболее вероятные виновники ухудшения КЭ

Установившееся отклонение напряжения

Разработка системы управления качеством электроэнергии с функциями диагностики качества электроэнергии

В последнее время развитие ИТ-технологий привело к распространению систем мониторинга качества электроэнергии, соединённых друг с другом по сети и обменивающихся данными, поскольку такие сети обеспечивают потребителям подробную информацию в отношении качества электроэнергии. Такие системы могут выдавать аварийные сигналы и показывать информацию о событиях качества электроэнергии. Однако при наступлении события качества электроэнергии потребителям трудно определить его причины и принять решение, потому что эти системы не обеспечивают возможность диагностики качества электроэнергии. Задачей системы управления качеством электроэнергии является предоставление потребителям различных функций диагностики качества электроэнергии, которые могли бы помочь принять необходимые меры в необходимом месте.

В последнее время качество электроэнергии стало серьёзной проблемой, как для поставщиков электроэнергии, так и для потребителей. Раньше от поставщиков требовалось только обеспечение электрической энергией без отключений. Но теперь потребители начали предъявлять более высокие требования к качеству электроэнергии, что связано с серьёзными изменениями в системах энергоснабжения, которые существенно затрагивают этот аспект. Во-первых, получили широкое распространение изделия силовой электроники. Так как эти устройства имеют нелинейную зависимость между напряжением и током, они ухудшают качество электроэнергии. Во-вторых, электрические нагрузки стали более требовательными к качеству питания. Например, известны своей чувствительностью к качеству электроэнергии высокотехнологичные ИТ-устройства, регулируемые приводы, оборудование для управления технологическими процессами и компьютеры. Даже незначительные «события качества электроэнергии» могут привести к их повреждению, сбоям в работе или выходу из строя аппаратной части.

Наконец, децентрализация рынка электроэнергии вносит значительные изменения во всю систему энергоснабжения. В традиционной системе энергоснабжения цены и условия обслуживания единообразны по причине монопольности поставщика. В децентрализованной энергосистеме монополия поставщика будет разделена на многие компании, такие как генерирующие компании, сетевые операторы, продавцы электроэнергии и энергосервисные компании. Каждая из этих компаний должна нести ответственность за ухудшение качества электроэнергии для других или поддерживать качество электроэнергии согласно контрактам. Поэтому при возникновении того или иного события качества электроэнергии могут возникать затруднения с определением его причин и поиском ответственного. В результате становится всё более и более важным точное измерение уровня качества электроэнергии и определение причин его ухудшения. Поэтому устройства точного мониторинга качества электроэнергии имеют хорошие перспективы.

В последнее время развитие ИТ-технологий привело к тому, что нормой стали системы мониторинга качества электроэнергии, соединённые друг с другом по сети и обменивающиеся данными, поскольку такая сеть дает потребителям доступ к подробной информации по качеству электроэнергии. Во многих случаях с целью локального управления качеством электроэнергии данные анализа нескольких систем мониторинга собираются через сетевое соединение на графическом интерфейсе пользователя (GUI). Системы GUI могут выдавать сигналы оповещения и показывать информацию о событиях качества электроэнергии в удобной для потребителей форме.

Однако при наступлении события качества электроэнергии потребителям трудно определить его причины и принять решение, т.к. рассматриваемые системы не обеспечивают диагностику качества электроэнергии. Была разработана система управления качеством электроэнергии с целью дать потребителям различные функции диагностики качества электроэнергии, которые могут помочь принять необходимые меры в необходимом месте.

Далее представлена подробная структура и функции системы управления качеством электроэнергии, которая состоит из системы мониторинга качества электроэнергии (СМКЭ), системы GUI и системы диагностики качества электроэнергии (СДКЭ). Также приведены некоторые результаты практического применения функций диагностики электроэнергии.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий