Схемы подключения магнитного пускателя с катушкой на 220 В
Перед тем, как перейдем к схемам, разберемся с чем и как можно подключать эти устройства. Чаще всего, требуются две кнопки — «пуск» и «стоп». Они могут быть выполнены в отдельных корпусах, а может быть единый корпус. Это так называемый кнопочный пост.
Кнопки могут быть в одном корпусе или в разных
С отдельными кнопками все понятно — у них есть по два контакта. На один подается питание, со второго оно уходит. В посте есть две группы контактов — по два на каждую кнопку: два на пуск, два на стоп, каждая группа со своей стороны. Также обычно имеется клемма для подключения заземления. Тоже ничего сложного.
Подключение пускателя с катушкой 220 В к сети
Собственно, вариантов подключения контакторов много, опишем несколько. Схема подключения магнитного пускателя к однофазной сети более простая, потому начнем с нее — будет проще разобраться дальше.
Питание, в данном случае 220 В, полается на выводы катушки, которые обозначены А1 и А2. Оба эти контакта находятся в верхней части корпуса (смотрите фото).
Сюда можно подать питание для катушки
Если к этим контактам подключить шнур с вилкой (как на фото), устройство будет находится в работе после того, как вилку вставите в розетку. К силовым контактам L1, L2, L3 можно при этом подавать любое напряжение, а снимать его можно будет при срабатывании пускателя с контактов T1, T2 и T3 соответственно. Например, на входы L1 и L2 можно подать постоянное напряжение от аккумулятора, которое будет питать какое-то устройство, которое подключить надо будет к выходам T1 и T2.
Подключение контактора с катушкой на 220 В
При подключении однофазного питания к катушке неважно на какой вывод подавать ноль, а на какой — фазу. Можно провода перекинуть
Даже чаще всего на А2 подают фазу, так как для удобства этот контакт выведен еще на нижней стороне корпуса
И в некоторых случаях удобнее задействовать его, а «ноль» подключить к А1
Даже чаще всего на А2 подают фазу, так как для удобства этот контакт выведен еще на нижней стороне корпуса. И в некоторых случаях удобнее задействовать его, а «ноль» подключить к А1.
Но, как вы понимаете, такая схема подключения магнитного пускателя не особо удобна — можно и напрямую проводники от источника питания подать, встроив обычный рубильник. Но есть гораздо более интересные варианты. Например, подавать питание на катушку можно через реле времени или датчик освещенности, а к контактам подключить линию питания уличного освещения. В этом случае фаза заводится на контакт L1, а ноль можно взять, подключившись к соответствующему разъему выхода катушки (на фото выше это A2).
Схема с кнопками «пуск» и «стоп»
Магнитные пускатели чаще всего ставят для включения электродвигателя. Работать в таком режиме удобнее при наличии кнопок «пуск» и «стоп». Их последовательно включают в цепь подачи фазы на выход магнитной катушки. В этом случае схема выглядит как на рисунке ниже
Обратите внимание, что
Схема включения магнитного пускателя с кнопками
Но при таком способе включения пускатель будет в работе только то время, пока будет удерживаться кнопка «пуск», а это не то, что требуется для длительной работы двигателя. Потому в схему добавляют так называемую цепь самоподхвата. Ее реализуют при помощи вспомогательных контактов на пускателе NO 13 и NO 14, которые подключаются параллельно с пусковой кнопкой.
Схема подключения магнитного пускателя с катушкой на 220 В и цепью самоподхвата
В этом случае после возвращения кнопки ПУСК в исходное состояние, питание продолжает поступать через эти замкнутые контакты, так как магнит уже притянут. И питание поступает до тех пор, пока цепь не будет разорвана нажатием клавиши «стоп» или срабатыванием теплового реле, если такое есть в схеме.
Питание для двигателя или любой другой нагрузки (фаза от 220 В) подается на любой из контактов, обозначенных буквой L, а снимается с расположенного под ним контакта с маркировкой T.
Подробно показано в какой последовательности лучше подключать провода в следующем видео. Вся разница в том, что использованы не две отдельные кнопки, а кнопочный пост или кнопочная станция. Вместо вольтметра можно будет подключить двигатель, насос, освещение, любой прибор, который работает от сети 220 В.
Реверс двигателя постоянного тока схемы.
В статье «Регуляторы оборотов электродвигателей » речь шла о регулировке оборотов коллекторных двигателей электроинструментов. Нередко возникает и другая задача: реверс двигателя постоянного тока, т.е. требуется обеспечить его вращение в одну и другую стороны. Это может понадобиться, например, для привода ворот в гараже или коттедже, в различных моделях и пр. Проще всего такая задача с реверсом решается с помощью мостовой схемы, которая в общем виде представлена на рис.1 . Схема реверса состоит из четырех ключей, двигателя и источника питания. Когда все ключи разомкнуты ( рис.1а ), ток через двигатель не течет. При коммутации первого и четвертого ключа ток через двигатель Iд течет слева направо ( рис.1б ), и двигатель вращается в одном направлении. А при коммутации второго и третьего ключей — течет справа налево ( рис.1в ), и двигатель вращается в обратном направлении. Понятно, что руками коммутировать для реверса четыре переключателя неудобно, поэтому вместо ключей используем транзисторы ( рис.2 ). Транзисторы могут быть разной проводимости, полевыми или биполярными. Работают они в ключевом режиме. Обратно включенные диоды VD1. VD4 защищают транзисторы от выхода из строя, так как в момент выключения электродвигателя возникает достаточно большая ЭДС самоиндукции. Силовая часть устройства реверса на биполярных транзисторах приведена на рис.3 . Она состоит из четырех силовых и двух управляющих транзисторов; резисторов, ограничивающих базовые токи; шунтирующих диодов и гальванической развязки в виде двух оптопар. Питание моста происходит от блока питания, подающего постоянное напряжение +50 В относительно земли. В cостоянии покоя на оба канала (А и Б) подается 0 В. Все транзисторы закрыты, на концах обмоток потенциал 0 В. Вал двигателя не вращается. Для вращения двигателя в одну сторону на канал А подается постоянное напряжение +5 В или ШИМ-сигнал, на канал Б — 0 В. Открывается оптрон VU1, следом управляющий VТ5; при этом VТ6 закрыт. Через резистор R2 протекает ток, открывающий силовые VТ1 и VТ4, а VТ2 и VТЗ закрыты. Таким образом, на конце обмотки Я1 потенциал составляет +50 В, на конце обмотки Я2 — 0 В. Вал двигателя вращается (например, по часовой стрелке). Чтобы включить реверс двигателя, на канал Б подается напряжение +5 В (ШИМ-сигнал), на канал А — 0 В. Управляющий VТ6 открыт, VТ5 — закрыт. Через резистор R4 в цепи коллектора VТ6 протекает ток, открывающий VТ2 и VТ3, а VТ1 и VТ4 закрыты. На конце обмотки Я1 потенциал составляет 0 В, на конце обмотки Я2 — +50 В. Вал двигателя вращается против часовой стрелки. В случае подачи полoжительного напряжения на оба канала (А и Б) произойдет короткое замыкание, поэтому такой режим предотвращается управляющей частью устройства. Реверс двигателя постоянного тока можно выполнить и на МОП-транзисторах ( рис.4 ). На входе схемы реверса последовательно установлены два инвертора так, что выход одного одновременно является входом другого. При этом сигнал управления (высокий или низкий логический уровень) на входе DD1.1 инвертируется и подается на вход DD1.2. Выходы инверторов управляют полевыми транзисторами. При высоком уровне на входе, на выходе DD1.1 — низкий уровень, а на выходе DD1.2. — высокий. Благодаря этому VТ2 и VТЗ открыты и пропускают ток от отрицательного к положительному полюсу источника питания. Двигатель М1 вращается против часовой стрелки. Если на вход схемы реверса подать низкий уровень, на выходе DD1.1 появится высокий уровень и откроются VT1 и VТ4, замыкая другую диагональ моста. Теперь ток потечет в другую сторону, и двигатель изменит направление вращения. Для управления устройством для реверса необходим логический сигнал МОП-уровня (0/+12 В).
Устройство для реверса испытывалось с электродвигателем автомобильного вентилятора. Мощные МОП-транзисторы (для КП74ЗБ напряжение сток-затвор составляет 80 В. максимальный ток стока — 4,9 А) обеспечивают запас по мощности и по напряжению. Сопротивление открытого канала составляет 0,3.. .0,5 Ом. Для повышения эффективности VT1. . .VТ4 устанавливаются на теплоотводы. Напряжение питания зависит от типа применяемого электродвигателя М1. Если его напряжение питания превышает 15 В, следует предусмотреть в схеме дополнительный стабилизатор для питания микросхемы DD1. Вместо К561ЛА7 можно применить другую микросхему серии 561, если ее элементы обеспечивают инвертирование сигнала (К561ЛЕ5, К561ЛН2). Другая схема управления реверсом, построенная на мощных комплементарных полевых транзисторах, показана на рис.5 .
Обычная нереверсивная схема включения
Простейшим вариантом включения считается нереверсивная схема, обеспечивающая вращение вала электродвигателя только в одну сторону. В качестве примера можно взять обычный пускатель с управляющей катушкой на 220 В.
Подключение схемы начинается в трехфазном автомате, подходит к силовым клеммам пускового устройства, и далее соединяется с тепловым реле. Управляющая катушка с одной из сторон соединяется с нулевым проводником, а с противоположной – с фазой путем использования в этой цепи функциональных кнопок.
В состав кнопочного поста входят две кнопки: ПУСК – с контактами нормально-разомкнутого типа и СТОП – с нормально-замкнутыми контактами. Одновременно с кнопкой запуска выполняется подключение нормально-замкнутого контакта управляющего катушечного элемента. За счет теплового реле, включенного в промежуток фазной линии, обеспечивается защита двигателя от чрезмерных перегрузок. Его нормально-замкнутый контакт оказывается соединенным с элементами управления.
Когда трехфазный автомат оказывается включенным, начинается течение тока в сторону силовых контактов пусковой аппаратуры и к управляющей цепи. После этого схема приходит в работоспособное состояние. С целью запуска электродвигателя вполне достаточно воздействия на пусковую кнопку. Далее, в управляющие компоненты подается питание. Цепь оказывается замкнутой, после чего якорь начинает втягиваться и в то же время замыкать контакт прибора управления. К силовой контактной группе двигателя подается ток, и вал начинает вращение. После возврата в исходное состояние пусковой кнопки, питание к обмотке контактора будет поступать, проходя по вспомогательному контакту, благодаря чему работа двигателя продолжится без перерыва.
Прекратить работу нереверсивного агрегата возможно имеющейся кнопкой СТОП. Это вызовет разрыв цепи, и питающее напряжение перестает подходить к блоку управления. Начинается размыкание шунтирующего контакта и возврат якоря в исходное состояние с одномоментным размыканием основных контактов. По окончании этого процесса, наступает остановка электродвигателя. Когда кнопка СТОП окажется отпущенной, контакт управляющего элемента будет пребывать в разомкнутом положении до следующего запуска схемы.
Чтобы защитить электродвигатель во время нереверсивного пуска, применяется тепловое реле на основе биметаллических контактных пластин. Под влиянием возрастающего тока они начинают выгибаться. Поскольку эпластины соединяются с расцепителем, контакт в управляющей обмотке прерывает поступление питающего напряжения. Контакты прибора разъединяются и переходят в первоначальное состояние.
Схемы подключения трехфазных электродвигателей
ВАЖНО! Перед подключением электродвигателя необходимо убедится в правильности схемы соединения обмоток электродвигателя в соответствии с его паспортными данными
Условные обозначения на схемах
Магнитный пускатель (далее — пускатель) — коммутационный аппарат предназначенный для пуска и остановки двигателя. Управление пускателем осуществляется через электрическую катушку, которая выступает в качестве электромагнита, при подаче на катушку напряжения она воздействует электромагнитным полем на подвижные контакты пускателя которые замыкаются и включают электрическую цепь, и наоборот, при снятии напряжения с катушки пускателя — электромагнитное поле пропадает и контакты пускателя под действием пружины возвращаются в исходное положение размыкая цепь.
У магнитного пускателя есть силовые контакты предназначенные для коммутации цепей под нагрузкой и блок-контакты которые используются в цепях управления.
Контакты делятся на нормально-разомкнутые — контакты которые в своем нормальном положении, т.е. до подачи напряжения на катушку магнитного пускателя или до механического воздействия на них, находятся в разомкнутом состоянии и нормально-замкнутые — которые в своем нормальном положении находятся в замкнутом состоянии.
В новых магнитных пускателях имеется три силовых контакта и один нормально-разомкнутый блок-контакт. При необходимости наличия большего количества блок-контактов (например при сборке реверсивной схемы пуска электродвигателя), на магнитный пускатель сверху дополнительно устанавливается приставка с дополнительными блок-контактами (блок контактов) которая, как правило, имеет четыре дополнительных блок-контакта (к примеру два нармально-замкнутых и два нормально-разомкнутых).
Кнопки для управления электродвигателем входят в состав кнопочных постов, кнопочные посты могут быть однокнопочные, двухкнопочные, трехкнопочные и т.д.
Каждая кнопка кнопочного поста имеет по два контакта — один из них нормально-разомкнутый, а второй нормально-замкнутый, т.е. каждая из кнопок может использоваться как в качестве кнопки «Пуск» так и в качестве кнопки «Стоп».
Схема прямого включения электродвигателя
Данная схема является самой простой схемой подключения электродвигателя, в ней отсутствует цепь управления, а включение и отключение электродвигателя осуществляется автоматическим выключателем.
Главными достоинствами данной схемы является дешевизна и простота сборки, к недостаткам же данной схемы можно отнести то, что автоматические выключатели не предназначены для частого коммутирования цепей это, в сочетании с пусковыми токами, приводит к значительному сокращению срока службы автомата, кроме того в данной схеме отсутствует возможность устройства дополнительной защиты электродвигателя.
Схема подключения электродвигателя через магнитный пускатель
Эту схему так же часто называют схемой простого пуска электродвигателя, в ней, в отличии от предыдущей, кроме силовой цепи появляется так же цепь управления.
При нажатии кнопки SB-2 (кнопка «ПУСК») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1, при отпускании кнопки SB-2 ее контакт снова размыкается, однако катушка магнитного пускателя при этом не обесточивается, т.к. ее питание теперь будет осуществляться через блок-контак KM-1.1 (т.е. блок-контак KM-1.1 шунтирует кнопку SB-2). Нажатие на кнопку SB-1 (кнопка «СТОП») приводит к разрыву цепи управления, обесточиванию катушки магнитного пускателя, что приводит к размыканию контактов магнитного пускателя и как следствие, к остановке электродвигателя.
Схема подключения реверсивного магнитного пускателя
Фактически это два магнитных пускателя, объединенные электрически и механически, дальше подробнее.
Реверсивное управление электродвигателем
Реверсивный пускатель нужен тогда, когда необходимо, чтобы двигатель вращался поочередно в обоих направлениях.
Смена направления вращения реализуется общеизвестным способом – меняются местами любые две фазы. Посмотрите на схему реверсивного включения двигателя ниже:
9. Схема подключения реверсивного магнитного пускателя на 220В с управлением от кнопок. ПРАКТИЧЕСКАЯ СХЕМА
Когда включен пускатель КМ1, это будет “правое” вращение. Когда включается КМ2 – первая и третья фазы меняются местами, движок будет крутиться “влево”. Включение пускателей КМ1 и КМ2 реализуется разными кнопками “Пуск вперед” и “Пуск назад“, выключение – одной, общей кнопкой “Стоп” , как и в схемах без реверса.
Обратите пристальное внимание на треугольник между силовыми контактами КМ1 и КМ2. Он означает “защиту от дурака”
Может произойти так, что по какой-то причине включатся оба пускателя сразу
Произойдёт короткое замыкание между фазами L1 и L3. Можно сказать, “Ну и что, у нас ведь есть мотор-автомат QF, он нас спасёт!” А если не спасёт? А пока он будет спасать, выгорят контакты пускателей!
Может произойти так, что по какой-то причине включатся оба пускателя сразу. Произойдёт короткое замыкание между фазами L1 и L3. Можно сказать, “Ну и что, у нас ведь есть мотор-автомат QF, он нас спасёт!” А если не спасёт? А пока он будет спасать, выгорят контакты пускателей!
Поэтому реверсивный пускатель должен иметь механическую защиту от одновременного включения двух его половин. А если он состоит из двух отдельных пускателей, между ними ставится специальный механический блокиратор.
Теперь посмотрите на контакты КМ2.4 и КМ1.4, стоящие в цепях питания катушек пускателей. Это – электрическая защита от того же дурака. Например, если включен КМ1, его НЗ контакт КМ1.4 разомкнут, и если наш дурак будет со всей своей дури жать на обе кнопки “Пуск” сразу, ничего не получится – двигатель будет слушаться той кнопки, которая нажата раньше.
Механическая и электрическая защиты в схеме подключения реверсивного пускателя должны быть всегда, они дополняют друг друга. Не ставить одну либо другую – моветон среди электриков.
Для реализации электрической блокировки одновременного включения и самоподхвата на каждый пускатель надо, кроме силовых, ещё один НЗ (блокировка) и НО (самоподхват). Но поскольку пятого контакта, как правило, в пускателях нет, приходится ставить доп. контакт. Например, для пускателя типа ПМЛ используют приставку ПКИ. А если, как в схеме 8, используется контроллер, самоподхват не нужен, и достаточно одного НЗ контакта на каждое направление вращения.
Реверсивное управление гидравликой
А вот пример реверсивного управления клапанами, из статьи про гидравлический пресс:
Электрическая схема управления гидравликой
То, что применяются реле, не должно сбивать с толку. Фактически контактор и реле – суть одно устройство, отличие только в конструкции и параметрах.
Фактически, схема повторяет схему для двигателя, только вместо кнопки “Стоп” – два концевых выключателя, и кнопки SB1, SB2 – с дополнительными блокировочными НЗ контактами. Подробное описание работы схемы – .
Работа реверсивного пускателя также подробно описана в статье про подключение генератора к сети дома.
Обзор моделей
Одними из наиболее популярных являются электродвигатели серии АИР. Существуют модели, исполненные на лапах 1081, и модели комбинированного исполнения – лапы + фланец 2081.
Электродвигатели в исполнении лапы+фланец обойдутся примерно на 5% дороже, чем аналогичные на лапах.
Как правило, производители предоставляют гарантию от 12 месяцев.
Читать также: Какие бывают ножницы по металлу ручные
Для электродвигателей, имеющих высоту вращения 56-80 мм, исполнение станины алюминиевое. Двигатели с высотой вращения более 90 мм представлены в чугунном исполнении.
Модели различаются между собой по мощности, частоте вращения, высоте оси вращения, КПД.
Чем мощнее двигатель, тем выше его стоимость:
- Двигатель с мощностью 0.18 кВт можно приобрести за 3 тыс. рублей (электродвигатель АИРЕ 56 B2).
- Модель с мощностью 3 кВт будет стоить уже около 10 тыс. рублей (АИРЕ 90 LB2).
Высота оси вращения для моторов с 1 фазой варьируется от 56 мм до 90 мм и напрямую зависит от мощности: чем мощнее двигатель, тем больше высота оси вращения, а значит и цена.
Различные модели имеют разный КПД, обычно от 67% до 75%. Больший КПД соответствует большей стоимости модели.
Следует обратить внимание также на двигатели, выпускаемые итальянской компанией ААСО, основанной в 1982 году:
- Так, электромотор ААСО серии 53, рассчитан специально для применения в газовых горелках. Эти моторы также могут быть использованы в установках для мойки, генераторах теплого воздуха, системах централизованного обогрева.
- Электромоторы серий 60, 63, 71 разработаны для использования в установках водоснабжения. Также, фирма предлагает универсальные двигатели серий 110 и 110 компакт, которые отличаются разнообразной сферой применения: горелки, вентиляторы, насосы, подъемные устройства и другое оборудование.
Применение реверсивного пускателя
Такой элемент управления электрической цепью, как реверсивный пускатель достаточно часто встречается в современном оборудовании, где предусмотрена функциональная возможность менять направление вращения ротора электромотора. Для промышленного применения выпускаются пускатели как для использования электрических двигателей с реверсом, так и для прямого их подключения. Все они используются для коммутации силовых агрегатов и подачи напряжения на электромотор. Только возможности реверсивного варианта дополнены функцией запуска мотора для работы в разных направлениях.
От обычных контакторов магнитный пускатель отличается тем, что обеспечивает защиту оборудования при режиме работы, предусматривающем частые запуски и остановки электроустановки. Такие устройства нередко включаются в схемы реверсивной работы электромотора при удаленном управлении системами вентиляции и кондиционирования, башенными кранами, насосными станциями, сверлильными и токарными станками, лифтами и многими другими промышленными и бытовыми механизмами.
В конструкцию типового магнитного пускателя входят следующие основные компоненты:
- электромагнитный блок движущимся якорем и катушкой;
- магнитный провод нормально разомкнутого типа;
- силовые контакты, предназначенные для замыкания/размыкания фаз электромотора при его включении и выключении (в реверсивных моделях они обычно находятся со стороны якорной обмотки и в верхней части устройства);
- коммутационные блоковые контакты для управляющей электроцепи;
- возвратный механизм для перевода пускателя в исходное положение, оснащенный пружиной (якорь под действием пружины вытягивается из катушки и размыкает контакты).
Процесс подключения магнитного пускателя как прямого, так и реверсивного типа достаточно простой, поэтому с данной работой вполне справится человек, имеющий базовые познания в электротехнике. Особых специализированных навыков и глубоких познаний в радиоэлектронике здесь не требуется. По сравнению с обычными пусковыми устройствами, пускатели с реверсом имеют дополнительную управляющую цепь, а также некоторые особенности подсоединения силовой части. Схема уже содержит встроенную защиту от токов короткого замыкания через нормально замкнутые контакты на каждом из пусковых блоков.
Включение реверсивного магнитного пускателя в работу можно разделить на несколько этапов:
- после активации основного выключателя подается напряжения на два блока силовых контактов, обеспечивающих вращение электромотора вправо или влево;
- при нажатии кнопки на первом пусковом блоке подается управляющий ток на одну катушку пускателя, в результате чего внутри нее замыкаются нормально разомкнутые контакты, а в другой катушке наоборот размыкаются нормально замкнутые контакты;
- напряжение поступает на силовые контакты электромотора и ротор начинает вращаться;
- при необходимости, изменение направления вращения вала электрического мотора осуществляется посредством второго пускового блока, меняющего положение фаз (переключение на него происходит после отключения обмотки двигателя и полной остановки вращательного движения ротора);
- нажатие кнопки на втором пусковом блоке активирует вторую пусковую обмотку, меняющую порядок включения силовых контактов и вызывающую реверсивное движение вала электромотора до тех пор, пока контакты управления обмоткой не будут снова разомкнуты.
В представленной вашему вниманию схеме защитный автомат обозначается как SF1, стоповая кнопка – SB1, первая пусковая кнопка – SB2, вторая кнопка пуска – SB3, прямой и реверсивный пусковые блоки – КМ1 и КМ2 соответственно.