Схемы энергосберегающих ламп и наиболее частые их неисправности

Ремонт и схемотехника энергосберегающих ламп.

Энергосберегающие лампы, или компактные люминесцентные лампы (КЛЛ), можно условно разделить на две части:
1) — сама люминесцентная лампа
2) — электронный пуско-регулирующий аппарат (ЭПРА, электронный балласт), встроенный в цоколь лампы.
Рассмотрим поближе, что там есть в электронном балласте:

— Диоды — 6 шт. Высоковольтные (220 Вольт) обычно маломощные (не больше 0,5 Ампер).
— Дроссель. (убирает помехи по сети).
— Транзисторы средней мощности (обычно MJE13003).
— Высоковольтный электролит. (как правило 4,7 мкФ на 400 вольт).
— Обычные конденсаторы на разной емкости, но все на 250 вольт.
— Два высокочастотных трансформатора.
— Несколько резисторов.
Разберём работу энергосберегающей лампы на примере наиболее распространённой схемы
(лампа мощностью 11Вт).

Схема состоит из цепей питания, которые включают помехо-защищающий дроссель L2, предохранитель F1, диодный мост, состоящий из четырёх диодов 1N4007 и фильтрующий конденсатор C4. Схема запуска состоит из элементов D1, C2, R6 и динистора. D2, D3, R1 и R3 выполняют защитные функции. Иногда эти диоды не устанавливают в целях экономии.
При включении лампы, R6, C2 и динистор формируют импульс, подающийся на базу транзистора Q2, приводящий к его открытию. После запуска эта часть схемы блокируется диодом D1. После каждого открытия транзистора Q2, конденсатор C2 разряжен. Это предотвращает повторное открытие динистора.Транзисторы возбуждают трансформатор TR1, который состоит из ферритового колечка с тремя обмотками в несколько витков. На нити поступает напряжение через конденсатор C3 с повышающего резонансного контура L1, TR1, C3 и C6. Трубка загорается на резонансной частоте,определяемой конденсатором C3, потому что его ёмкость намного меньше,чем ёмкость C6. В этот момент напряжение на конденсаторе C3 достигает порядка 600В. Во время запуска пиковые значения токов превышают нормальные в 3-5 раз, поэтому если колба лампы повреждена, существует риск повреждения транзисторов.
Когда газ в трубке ионизирован, C3 практически шунтируется, благодаря чему частота понижается и генератор управляется только конденсатором C6и генерирует меньшее напряжение, но, тем не менее, достаточное для поддержания свечения лампы.
Когда лампа зажглась, первый транзистор открывается, что приводит к насыщению сердечника TR1. Обратная связь на базу приводит к закрытию транзистора. Затем открывается второй транзистор, возбуждаемый противоположно подключенной обмоткой TR1 и процесс повторяется.
 

Неисправности энергосберегающих ламп

Наиболее частые причины поломки энергосберегающих ламп — обрыв нити накала или выход из строя ЭПРА. Как правило, причиной выхода из строя последнего бывает пробой резонансного конденсатора или транзисторов. Конденсатор C3, часто выходит из строя в лампах, в которых используются дешёвые компоненты, рассчитанные на низкое напряжение. Когда лампа перестаёт зажигаться, появляется риск выхода из строя транзисторов Q1 и Q2 и вследствие этого — R1, R2, R3 и R5. При запуске лампы генератор оказывается,перегружен и транзисторы не выдерживают перегрева. Если колба лампы выходит из строя, электроника обычно тоже ломается, в основном перегорают силовые транзисторы. Если колба уже старая, одна из спиралей может перегореть и лампа перестанет работать. Электроника в таких случаях, как правило, остаётся целой.
Чаще всего лампы перегорают в момент включения.
 

Как правило лампа собрана на защелках.

Необходимо её разобрать:

Отключаем колбу:

Проверяем Омметром нити накала колбы.

Скачать справочные данные на транзисторы для люминесцентных ламп

• mje13001 / Даташит на транзистор mje13001, pdf, 88.67 kB, скачан: 6890 раз./

• MJE13002 (УКТ9145Б),MJE13003 (УКТ9145Б)_40W / Даташит на транзисторы, pdf, 187.82 kB, скачан: 9397 раз./

• MJE13004 MJE13005_75W / Даташит на транзисторы NPN, pdf, 184.15 kB, скачан: 4044 раз./

• mje13005_on_75W / Даташит на транзисторы к энергосберегающим лампам., pdf, 135.38 kB, скачан: 4002 раз./

• mje13006 mje13007_80W / Даташит на транзисторы к энергосберегающим лампам., pdf, 192.8 kB, скачан: 3600 раз./

• MJE13007-On_80W / Даташит на NPN транзисторы к энергосберегающим лампам., pdf, 127.07 kB, скачан: 10240 раз./

• mje13008 mje13009_100W / Даташит на NPN транзисторы к энергосберегающим лампам. Собраны несколько даташитов разных производителей в один файл., pdf, 1.07 MB, скачан: 4741 раз./

Ёмкость входного фильтра и пульсации напряжения.

Во входных фильтрах электронных балластов, из-за экономии места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.

Чтобы снизить уровень пульсаций напряжения на выходе БП, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить на более мощный.

Если требуется построить компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мыльниц». Например, в одноразовых фотоаппаратах Kodak установлены миниатюрные конденсаторы без опознавательных знаков, но их ёмкость аж целых 100µF при напряжении 350 Вольт.

Принцип действия и схема

При ремонте следует учесть что ЭСЛ состоит из нескольких элементов: электроды в колбе, цоколь (резьбовой, штырьковой), пусковое устройство. Благодаря встроенному последнему элементу, устройство малогабаритно.

Принцип работы: при включении подается напряжение, в результате чего происходит нагревание электродов. После чего высвободившиеся электроны вступают во взаимодействие со ртутными атомами, происходит ультрафиолетовое излучение. Оно незаметно для восприятия глазом. Для этого система включает вещество под названием люминофор, поглощающее данное излучение и вырабатывающее привычный нам свет.

Работа энергосберегающей лампочки разбирается при рассмотрении схемы. Для примера описывается работа по схеме 11 ваттной лампочки.


Схема работы лампы мощностью 11 Вт

Из схемы видно, что она состоит из цепей питания, в которые включены дроссель L2, предохранитель F1, четыре диода 1N4007 составляют диодный мост, С4 – конденсатор, C2, D1, R6 – элементы схемы, динистор, D2, D3, R1, R3 – элементы защитной функции. Не все лампочки содержат защитные элементы, их убираю производители при экономии на деталях.

В момент включения лампочки подается импульс C2, R6, он подается на транзистор Q2, происходит его открытие. Диод D1 после запуска блокирует часть схемы. Трансформатор TR1 возбуждается транзисторами. Через конденсатор С3 передается напряжение с контура L1, TR1, С3, С6. Трубка загорается в период, когда на конденсаторе С3 достигается напряжение в 600В. При розжиге лампы открывается первый транзистор и сердечник TR1 насыщается.

Конструктивная схема

Конструктивно схема светодиодной лампы на 220В состоит из трех основных частей: корпуса, электронной части и системы охлаждения. Сетевое напряжение через цоколь поступает на драйвер, где преобразуется в сигнал постоянного тока, необходимый для свечения светодиодов. Свет от излучающих диодов обладает широким углом рассеивания и поэтому не требует установки дополнительных линз. Достаточно обойтись рассеивателем. В процессе работы детали драйвера и светодиоды нагреваются. Поэтому в конструкции лампы обязательно должен быть продуман отвод тепла.

В фирменных светодиодных лампах на 220В печатная плата с SMD светодиодами крепится к радиатору через термопасту для эффективного отвода тепла.

Форма и вес энергосберегающих ламп

Люминесцентные лампы могут иметь самую разнообразную форму: спиральки, подковы, различные геометрические фигуры. Это никак не влияет на мощность света и его энергопотребление. Зато влияет на общий размер. Обычно люминесцентные лампы ввиду внедренной системы ПРА и собственно самой колбы выглядят в люстрах и светильниках весьма массивно. Естественно, это сказывается и на их весе.

Светодиодные лампы также могут иметь разные размеры. Однако, в последнее время имеется тенденция изготавливать их в виде стандартных форм, как у ламп накаливания. То есть стандартная колба, покрытая составом, рассеивающим свет, а внутри – блок со светодиодами. Таким образом, этот формат ламп наиболее лаконично вписывается в стили люстр и светильников. Да даже одиноко висящая светодиодная лампа на проводах с патроном выглядит весьма органично.

Срок службы отремонтированной лампы

Как
долго проработает такая лампочка с “шунтированным” светодиодом?

Все будет зависеть от двух факторов. Во-первых, какое напряжение у вас в сети (нормальное, повышенное (>230V) или пониженное).

Во-вторых, где стоит эта лампочка. Если это коридор, туалет, подсобка, сарай и т.п., где она включается на непродолжительное время, то лампа может спокойно прослужить несколько месяцев.

Если
это зал, спальня, кухня, то здесь речь идет о гораздо меньшем сроке.

Есть мнение, что отсутствующий элемент вызовет повышение тока во всей цепочке. Что зачастую на самом деле и происходит.

А
это уже приводит к последовательному выходу из строя остальных светодиодов один
за другим.

Но
если драйвер в лампе выполнен качественно и имеет хороший импульсный
стабилизатор тока, то работоспособность лампочки будет поддерживаться очень
долгое время.

Вот вам наглядное сравнение силы тока в “зашунтированной” лампе…

и в лампе, где вместо сгоревшего светодиода были впаяны несколько добавочных резисторов, которые как раз и должны были снизить ток.

Как
видите, разницы практически не наблюдается. Думаете стоит подобным образом
заморачиваться и беспокоиться о меньшем сроке службы?

Но опять же повторимся, это только при наличии хорошего драйвера.

При классической дешевой схеме питания светодиодной лампы на гасящем конденсаторе, срок службы сокращается в разы.

Стабилизация тока в таких лампах очень условная.

Ремонт балласта

Чтобы выполнить элементарный ремонт балласта энергосберегающей лампы своими руками, нужно для начала внешне осмотреть его. Как правило, это сразу позволяет определить причину – вздувшиеся конденсаторы, подгоревшие дорожки, деформированные транзисторы и проч. Однако замена их не гарантирует восстановления работоспособности светильника. Поэтому потребуется более глубокая проверка главных элементов всей электросхемы.

Типовая схема электронного балласта энергосберегающей лампы выглядит следующим образом:

Условные обозначения на схеме

L1 (катушка) и C1 (емкость) играют роль фильтрующего элемента от помех. В дешевых моделях вместо них установлен простой проводник.

L2 (катушка) с заданным количеством витков (250-350) проводника толщиной 200 мкм на стержне из феррита. Внешне модуль имеет форму буквы Ш и похож на трансформаторный блок.

Т1 (трансформатор) содержит 3-9 витков из проводника в 300 мкм на кольце из фиррита.

FY1-0.5 A (предохранитель), как правило, не включается в китайские модели, вместо него ставится сопротивление в несколько Ом R1 (чаще всего сгорает именно этот элемент).

Устройство и принцип работы

Выпускаемые отечественной промышленностью энергосберегающие лампы, а также широко распространенные китайские их аналоги имеют схожую электронную схему (ЭПРА), работающую по принципу импульсного преобразования. Такое устройство энергосберегающей лампы обеспечивает ей следующие очевидные преимущества:

  • Входящая в энергосберегающие лампы электронная начинка гарантирует высокую нагрузочную способность изделия, работающего в режиме длительного (непрерывного) свечения;
  • Эффективность использования сетевого напряжения (КПД) в этом случае существенно повышается;
  • Встроенная схема энергосберегающей лампы позволяет получить компактное и лёгкое изделие (за счёт отсутствия громоздкого и тяжёлого трансформатора).

Читать также: Диск по металлу для дисковой пилы

Дополнительная информация. Рассматриваемая энергосберегающая импульсная схема питания имеет только один небольшой недостаток, состоящий в её низкой надёжности и частом выходе из строя.

Суть работы устройства ЭПРА (так называемого балласта) достаточно проста и состоит в следующем:

  • Сначала напряжение 220 Вольт преобразуется в выпрямительном модуле в постоянный потенциал примерно той же величины;
  • Затем в электронной схеме под воздействием выпрямленного напряжения формируется последовательность высоковольтных импульсов частотой от 20 до 40 кГц (точное значение зависит от конкретной модели изделия);
  • На завершающем этапе преобразования электрические импульсы выпрямляются (сглаживаются) выходным дросселем, а получившееся после этого высокое напряжение подаётся непосредственно на осветительную лампу.

Для лучшего понимания принципа, согласно которому работают энергосберегающие лампы, потребуется более тщательное рассмотрение используемой в них электронной схемы.

Как найти неисправный светодиод мультимером?

А
что делать, если все светодиоды визуально целые и на них нет никаких черных
точек? Здесь понадобится китайский мультиметр.

Лучше всего показывают те, которые работают на кроне 9V, а не на пальчиковых батарейках.

Ставите переключатель в режим прозвонки диодов и прикасаетесь щупами к ножкам светодиода на площадке. Если он исправен, то должен засветиться.

Поврежденный
светодиод светиться не будет.

При этом соблюдайте полярность. Светодиоды горят только при правильном положении щупов (“+” и “-”).

Неисправный
светиться не будет, как бы вы не меняли полярность. После выявления
неисправности дальнейший ремонт проводите как было показано выше.

Световые характеристики источников

Для сравнения параметров различных светильников нам потребуется оперировать фотометрическими терминами и сравнительными параметрами:

  • телесным углом;
  • световым потоком;
  • создаваемой освещенностью;
  • спектральной чувствительностью;
  • цветовой температурой;
  • световой отдачей.

Фотометрические термины

Телесный угол и световой поток

Базовой фотометрической величиной, характеризующей перенос энергии света источника в единицу времени по определенному направлению считается сила света. Ее измеряют в канделах.

Телесный угол ограничивает часть пространства от источника, измеряется в стерадианах. Световой поток определяется силой света в границах телесного угла, измеряется люменами.

Освещенность

Световой поток от источника света попадает на встречную поверхность, освещает ее площадь. Его действие оценивается освещенностью, измеряемую в люменах.

Для сведения: обычная лампочка накаливания мощностью 25 ватт вырабатывает световой поток около 200 лм. А дальше идет такое соответствие: 40 — 500, 60 — 850, 75 — 1200, 100 — 1700.

Сравнительные параметры

Спектральная чувствительность

Наши глаза по-разному воспринимают длину волны света. Оптимальный спектр находится на границе желтого и зеленого цветов с длиной порядка 350 нм.

Эту особенность учитывают все производители осветительных приборов.

Цветовая температура

Градация цветов, которыми обладает осветительная лампа приводится на шкале градусов Кельвина.

С учетом спектральной чувствительности на ней видно, что лампочка накаливания создает теплый белый цвет, благоприятный для человека. Галогенные источники немного светлее, но близки к ней по расположению.

Энергосберегающие люминесцентные и светодиодные источники могут создаваться с более расширенными возможностями освещения при на шкале цветовой температуры.

Световая отдача

Этим параметром оценивают световой поток источника, на который затрачивается один ватт мощности.

Световая отдача наглядно показывает, что самые большие потери электроэнергии создает лампа накаливания, а чуть меньше — галогенная.

Высокой эффективностью отмечается работа энергосберегающей люминесцентной лампы. Самое максимальное использование мощности обеспечивает светодиод.

Освежив в памяти перечисленное фотометрические критерии переходим к сравнительной оценке экономических показателей разных моделей источников света.

Отличия от ламп накаливания

Все лампочки имеют коэффициент полезного действия, или КПД. У энергосберегающих моделей он может достигать 80% (в зависимости от конструкции конкретной модели). У обычной лампы КПД, как правило, не превышает 18%. Если за основу взять 100 Ватт потреблённой энергии, то лампа накаливания способна преобразовать всего лишь 18 Ватт, оставшаяся энергия нагревает спираль.

Немаловажным достоинством энергоэффективных устройств является их долговечность. Срок службы люминесцентной, а особенно светодиодной модели превышает в несколько раз срок службы обычной лампочки. Они не требуют частой замены и поэтому их смело можно устанавливать в труднодоступных местах (высокие потолки, лестничные пролёты, ниши).

Энергосберегающие модели, по сравнению с привычными лампами накаливания, меньше нагреваются, и поэтому являются менее пожароопасными. Больший показатель мощности и меньший нагрев позволяют их устанавливать в нишах натяжных потолков, люстрах, бра и прочих сложных конструкциях. Температура нагрева экономных вариантов не достигает таких пределов, при которых было бы возможно плавление проводов и других пластиковых элементов патрона.

Несомненным плюсом экономных вариантов является наличие нескольких световых оттенков, благодаря которым можно выбирать оттенок на своё усмотрение.

В отличие от лампы накаливания, на любую энергосберегающую лампу есть гарантия.

Но есть и минусы у экономичных ламп.

Стоимость этих вариантов в несколько раз превышает цену ламп накаливания. Но учитывая срок их службы и экономию электроэнергии, приобретение энергосберегающих изделий является для бюджета более выгодным.

Прежде всего, страдают люди, имеющие повышенную чувствительность к свету. Длительное нахождение под воздействием энергосберегающих ламп может привести к обострению различных кожных заболеваний. Опасны такие лампы и для людей, страдающих эпилепсией, так как они могут спровоцировать приступ мигрени и головокружения.

Не стоит забывать и про стробоскопический эффект экономных ламп. Интенсивность свечения такой лампы меняется сто раз за 1 секунду при частоте тока в 50 Гц, то есть лампа зажигается и гаснет сто раз в секунду (мерцает).

Люминесцентные модели содержат пары ртути. Её содержание колеблется в пределах 1-70 мг.

В чем суть реконструкции балласта

Чтобы получить возможность подключения нагрузки к отдельной обмотке, надо либо намотать ее на дросселе L5, либо применить дополнительный трансформатор. Переделка балласта в ИБП предусматривает:

  • разборку корпуса балласта КЛЛ. Это можно сделать отверткой, которую надо поочередно, шаг за шагом вставлять по линии соприкосновения его деталей. Прилагаемое к лампе усилие не должно быть чрезмерным для колбы. Надо постараться давить на нее с минимальной силой.

    Как открыть корпус балласта КЛЛ

  • Отсоединение контактов лампы от платы балласта. Для этого их жилки отматываются с четырех штырьков на плате.

    Отсоединение контактов колбы

  • Извлечение платы и соединение всех четырех штырьков перемычками (шунтирование лампы).


Плата балласта извлечена из лампы Для дальнейшей переделки электронного балласта в блок питания из энергосберегающей лампы надо принять решение относительно трансформатора:

  • использовать имеющийся дроссель, доработав его;
  • либо применить новый трансформатор.

Отличия конструкции лампы от импульсного блока

Очень похожа по строению импульсного блока питания, из-за чего сделать импульсный бп можно очень легко и быстро. Для переделки, необходимо установить перемычку и дополнительно установить трансформатор вырабатывающий импульсы и который оснащён выпрямителем.

Для облегчения ибп, удалена стеклянная люминесцентная лампа и некоторые составляющие конструкции, которые были заменены специальным соединителем. Вы могли заметить, что для изменения необходимо выполнить всего несколько простых операций, и этого будет вполне достаточно.

Плата с энергосберегающей лампы

Выдаваемый показатель мощности, ограничен размером используемого трансформатора, максимальным возможным пропускным показателем основных транзисторов и габаритами охлаждающей системы. Чтобы увеличить немного мощность, достаточно намотать ещё обмотки на дроссель.

Виды, обозначение энергосберегающих приборов

Первые в любом светильнике используют букву, вторые — числовое значение. Разобраться с этим, сравнить яркость помогут данные в таблице ниже:

Отечественная маркировкаЗарубежная маркировкаВид, параметры освещенностиЦветовая температура в Кельвинах
Ллюминесцентная
Б29Цветность белая теплая, ближе к желтому2900
33Белое холодное свечение4100
ЛД54Лампа дневного света, свечение холодное с синевой6200
827Белый с желтизной теплый          2700
830/930С белый теплый светом свечения3000
835Белый           3500
640, 840, 940Белое холодное свечение       4000
864Холодный дневной свет           6100
765, 865, 965-«-6500
Ц880 SKYWHITEЯрко белый, холодный дневной8000
950, 954Белый дневной5400
960Холодный с синевой6400
Э (улучшенная экологичность)15Красное свечение
17Зеленый
16Желтое свечение
18Синий
08Оптимальный для интерьерной подсветки и проверки банкнот
77Подходит для растений
89Используют для аквариума

Маркировка, помимо данных, отображенных в таблице, показывает силу мощности (15w, 16, 20 Вт, 40 Вт, 50, 6 w, 72 w, 8w, 9Вт). Есть в обозначении температура цвета (6500К), вид цоколя (е27). Имеется обозначение галогеновых ламп (mr 16), рефлекторных (r 80).

Отличие схемы КЛЛ от импульсного БП.

Это одна из самых распространённых электрических схем энергосберегающих ламп. Для преобразования схемы КЛЛ в импульсный блок питания достаточно установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно удалить.

А это уже законченная схема импульсного блока питания, собранная на основе КЛЛ с использованием дополнительного импульсного трансформатора.

Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.

Определяем неисправные элементы на плате пускорегулирующего устройства.

Предохранитель.

В первую очередь проверяем предохранитель. Найти его легко. Одним концом он припаян к центральному контакту цоколя лампы, а вторым к плате. На него надета трубка из изоляционного материала. Обычно при такой неисправности предохранители не выживают.

Но как оказалось, это не предохранитель, а пол ваттный резистор сопротивлением около 10 Ом, причем был сгоревшим (в обрыве).

Определяется исправность резистора легко. Мультиметр переводите в режим измерения сопротивления на предел «прозвонка» или «200» и производите замер. Если резистор-предохранитель целый, то прибор покажет сопротивление около 10 Ом, ну а если покажет бесконечность (единицу), значит, он в обрыве. Как измерить сопротивление можно прочитать здесь.

Здесь один щуп мультиметра ставите к центральному контакту цоколя, а второй к месту на плате, куда припаян вывод резистора-предохранителя.

Еще один момент. Если резистор-предохранитель окажется сгоревшим, то когда будете его выкусывать, старайтесь откусить ближе к корпусу резистора, как показано на правой части верхнего рисунка. Потом к выводу, оставшемуся в цоколе, будем припаивать новый резистор.

Колба (лампа).

Далее проверяем сопротивление нитей накала колбы. Желательно выпаять по одному выводу с каждой стороны. Сопротивление нитей должно быть одинаковым, а если разное, значит, одна из них сгорела. Что не очень хорошо.

В таких случаях специалисты советуют параллельно сгоревшей спирали припаять резистор таким же сопротивлением, как у второй спирали. Но в моем случае обе спирали оказались целыми, а их сопротивление составило 11 Ом.

Следующим этапом проверяем на исправность все полупроводники – это транзисторы, диоды и стабилитрон. Если Вы не знаете, как проверить транзистор или диод, то прочитайте статью, как проверить транзистор мультиметром.

Как правило, полупроводники не любят работу с перегрузкой и коротких замыканий, поэтому их проверяем тщательно.

Диоды и стабилитрон.

Диоды и стабилитрон выпаивать не надо, они и так прекрасно прозваниваются прямо на плате. Прямое сопротивление p-n перехода диодов будет находиться в пределах 750 Ом, а обратное должно составлять бесконечность. У меня все диоды оказались целыми, что немного обрадовало.

Стабилитрон двуханодный, поэтому в обоих направлениях должен показать сопротивление равное бесконечности (единица).

Если у Вас некоторые диоды оказались неисправные, то их надо приобрести в магазине радиокомпонентов. Здесь используются 1N4007. А вот номинал стабилитрона определить не смог, но думаю, что можно ставить любой с подходящим напряжением стабилизации.

Транзисторы.

Транзисторы, а их два — придется выпаять, так как их p-n переходы база-эмиттер зашунтированы низкоомной обмоткой трансформатора.

Один транзистор звонился и вправо и влево, а вот второй был якобы целым, но вот между коллектором и эмиттером, в одном направлении, показал сопротивление около 745 Ом. Но я значение этому не придал, и посчитал его неисправным, так как с транзисторами типа 13003 дело имел в первый раз.

Транзисторы такого типа, в корпусе ТО-92, найти не смог, пришлось купить размером больше, в корпусе ТО-126.

Резисторы и конденсаторы.

Их тоже надо все проверить на исправность. А вдруг.

У меня еще оставался один SMD резистор, номинал которого небыло видно, тем более, что принципиальную схему этого пускорегулирующего устройства я не знал. Но была еще одна такая же рабочая энергосберегающая лампа, и она пришла мне на выручку. На ней видно, что номинал резистора R6 составляет 1,5 Ома.

Чтобы окончательно убедиться в том, что все возможные неисправности были найдены, я прозвонил все элементы на рабочей плате и сравнил их сопротивления на неисправной. Причем выпаивать ничего не стал.

1. Транзисторы 13003 – 2 шт. по 10 рублей каждый (в корпусе ТО-126 — взял 10 штук); 2. SMD резисторы — 1,5 Ома и 510 кОм по 1 рублю каждый (взял по 10 штук); 3. Резистор 10 Ом – 3 рубля за штуку (взял 10 штук); 4. Диоды 1N4007 – 5 рублей за штуку (взял 10 штук на всякий случай); 5. Термоусадка – 15 рублей.

Пошаговая инструкция как заменгить лампу дневного света в потолочном светильнике

Для того чтобы поменять перегоревшую лампу дневного света в потолочном светильнике:

  1. Снимите напряжение со светильника. Для надёжности отключите подачу электроэнергии на щитке.
  2. Обеспечьте доступ к лампе, сняв плафон или светоотражающую решётку. Плафоны крепятся к источнику света винтами или защёлками. Открутите винты, освободите фиксатор защёлки. Снимите плафон или светоотражающую решётку.

  3. Плафон иногда крепится к самой лампе. В этом случае потяните за него и освободите перегоревший источник света.
  4. Возьмитесь за колбу двумя руками и поверните на 900 в любую сторону, выньте из патрона.
  5. Установите новую лампу, проделав всё в обратном порядке. Поместите цоколь в патрон, повернув колбу на 900 в противоположную сторону.
  6. Для проверки работы включите её.

При отсутствии свечения подожмите источник света – возможен плохой контакт между цоколем и патроном.

Как снять, вставить и собрать в светильники с цоколем G5 и G13

Люминесцентные источники света с цоколем G5 и G13 применяются на кухне, в ванной комнате, для подсветки зеркал. Они устанавливаются в потолочные светильники. Перегорание подтверждает тёмное кольцо на конце колбы. Причиной неисправности может быть отказ стартера (балласта) или дросселя. Для замены люминесцентного источника:

  1. Снимите напряжение со светильника. Для надёжности отключите подачу электроэнергии на щитке.
  2. Разберите светильник. Обеспечьте доступ к колбе, сняв плафон или светоотражающую решётку. Плафоны крепятся к источнику света винтами, защёлками. Открутите винты отвёрткой или освободите фиксатор защёлки. Снимите плафон или светоотражающую решётку.
  3. В одноламповых светильниках плафон крепится за саму лампу. В этом случае потяните за него и освободите перегоревший источник света.
  4. Для снятия колбы возьмитесь за неё двумя руками и поверните вокруг своей оси на 900 в произвольную сторону. Штыри цоколя выйдут из направляющих гнёзд в патроне.
  5. Потяните источник света в противоположную сторону от светильника и вытащите из патрона.
  6. Приобретите новую лампу. Её характеристики и размеры должны быть такие же, как у перегоревшего источника.
  7. Для установки нового источника света поместите его концы в патрон до упора, поверните на угол 900 в произвольную сторону до лёгкого щелчка. Зафиксируйте положение. Подайте питание на светильник и проверьте его работу. При нормальном свечении поставьте на место плафон или решётку. Если светильник не горит, отключите его и пошевелите колбу в разные стороны для лучшего контакта с патроном. При отсутствии свечения вытащите её и установите заново.

Если принятые меры не приводят к положительным результатам, возможно неисправен стартер или дроссель.

Как выкрутить в светильниках с современными типами  цоколей G23, GX23

Люминесцентные источники света с цоколями G23, GX23 применяются в настольных светильниках.

Они отличаются формой и размерами штырей.

Крепление цоколя с патроном такое же, как у других видов, поэтому порядок замены перегоревшей лампы не меняется.

Для этого:

  1. Обесточьте светильник, выдернув шнур из розетки.
  2. Освободите колбу от плафона при помощи фиксатора. Для извлечения потяните за край колбы в противоположную сторону от плафона, достаньте из фиксатора. Покачивая, потяните в сторону от патрона и вытащите её.
  3. Сходите в магазин со старой лампой и купите такую же новую.
  4. Установите колбу в светильник в обратном порядке, вставив цоколь в патрон. Прижимая колбу к патрону, надавите на неё до щелчка.

Люминесцентная лампа содержит до 5 мг ртути. При замене повреждённого источника света на новую лампу, её нельзя выбрасывать с бытовым мусором, а необходимо правильно утилизировать. Для этого существуют специальные организации.

Предыдущая
ЛюминесцентныеОпределение неисправностей люминесцентных ламп
Следующая
ЛюминесцентныеХарактеристики компактных люминесцентных ламп

Правила разбора

Ремонту энергосберегающей лампы своими руками предшествует разбор и проверка ее основных компонентов в следующем порядке:

  1. Предохранитель.
  2. Колба.
  3. Транзисторы и резисторы.
  4. Конденсаторы.

Рассмотрим подробно основные особенности и правила демонтажа своими руками каждого из них.

Предохранитель

Предохранитель располагается посередине жилы, соединяющей контакты цоколя и печатной платы. Он состыкуется с резисторным модулем и обязательно оснащается изоляционным кожухом. Чтобы определить его работоспособность, необходимо прозвонить его с помощью мультиметра. Для этого один щуп прибора должен контактировать с центральной цокольной клеммой, другой – с местом соединения проводника предохранительного модуля с платой.

При полной работоспособности этого компонента результат измерения должен быть равен 10 Ом, в противном случае прибор покажет единицу. Устранить неисправность можно, заменой старого – откусив его для этого по самое основание корпуса – чтобы для удобства пайки нового остался максимально длинный вывод из цоколя.

Колба

Прежде чем приступать к элементам платы, нужно проверить нити накала колбы. В энергосберегающей лампе их две. Их сопротивление должно быть одинаковым и равным примерно 10-11 Ом. Если разница между ними существенна, значит одна из них перегорела. Восстановить ее своими руками можно, если припаять параллельно ей резистор аналогичного сопротивления.

Транзисторы и резисторы

Как правило, в схеме энергосберегающей лампы всего пара транзисторов. Однако для их прозвонки придется их выпаять – ввиду зашунтировки p-n-перехода в обмотке трансформатора. Сделать это своими руками при достаточном опыте и небольшом паяльнике не так сложно. В случае неисправности их нужно заменить на аналоги с такими же характеристиками. Резисторы также проверяются мультиметром. Показатели их рабочих параметров указаны сверху на корпусе.

Конденсаторы

Конденсатор проверяется таким же способом, как и выше описано. В случае необходимости заменяется на новый. В качестве подсказки во время проверки можно опираться на его внешний вид. Сломанный обычно имеет вздутый корпус или подтеки. В большинстве случаев именно этот модуль является главным виновником выхода из строя энергосберегающих ламп китайских производителей.

Неисправности энергосберегающих ламп

Поломка энергосберегающей лампыРешение проблемы поломки лампы
1.Повышение напряжения приводит к вздутию и протечке конденсатора, лампа прекратит работать.Такое повреждение требует заменить все полупроводники.
2.Повышение напряжения пробивает конденсатор. Прибор начинает светиться в местах, где остались нити накала.Данное повреждение исправляется заменой конденсатора.
3.Неправильная эксплуатация приводит к неравномерному распределению светового потока. Колба частично герметизируется.В этой ситуации лампа неисправна.
4.При сгорании нити накала (достаточно одной), лампа не работает. Для начала необходимо проверить конденсатор.На месте оборванного накала, диод заменяется резистором посредством выпаивания.
5.Неисправность диодного тиристора приводит к поломке устройства.Необходимо заменить неисправный элемент.

Ремонт энергосберегающих ламп

Приступать к ремонту энергосберегающих ламп можно выяснив причину неисправности и убедившись в наличии запасных деталей, которые будут устанавливаться на место поврежденных.

Далее, с помощью отвертки, разбирают корпус лампочки. Затем отсоединяют провода, идущие из колбы. Перерезают оба провода, питающие электрическое устройство. Цифровыми клещами проверяют спирали колбы. При сгорании хотя бы одной спирали накала, колба считается неисправной и лампа подлежит утилизации.

При работающих спиралях восстановить прибор можно. Приобретая детали взамен перегоревших, нужно выбирать модели той же маркировки что и неисправное устройство.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий