Содержание
Строительные компании нередко предлагают покупателям квартиры, в которых отсутствует разводка классического водяного отопления, предлагая решить этот вопрос самим владельцам жилья. Широкий ассортимент систем и отопительного оборудования позволяет решить возникшую проблему несколькими разными способами, в зависимости от того, в каких климатических условиях вы живете и какими возможностями в части источника энергии для обогрева располагаете.
Конечно, хорошо, когда есть возможность использовать для нагрева теплоносителя газ в силу его дешевизны. Но так как такая возможность есть далеко не везде, приходится рассматривать другие варианты, например, отопление приборами, работающими на электричестве: конвекторами, электрокаминами, системами теплого пола и так далее.
При выборе отопительной системы и приборов важнейшим вопросом является определение количества обогревателей и их мощности, необходимой для создания комфортного микроклимата в каждом из помещений. Займемся решением этого вопроса.
Как рассчитать подключенную нагрузку
Подключенная нагрузка получается путем умножения установленной мощности на средний коэффициент одновременности. Для среднего дома на одну семью это значение составляет 0,6.
В односемейных домах среднего размера со стандартным оснащением обычно достаточно мощности подключения 10 кВт , в домах с электрической плитой или электрическим отоплением требуется соответственно 15 и 30 кВт .
Если мы намеренно или случайно снизим мощность подключения в приложении, плата за подключение будет ниже, но мощность, поставляемая энергокомпанией, на практике может оказаться недостаточной для покрытия потребностей. В свою очередь, завышение мощности подключения на всякий случай излишне увеличит стоимость подключения к электросети.
Мощность временного подключения при строительстве обычно 5-8 кВт .
Какие электрические котлы чаще всего используют для обогрева частного дома
Есть 4 разновидности:
- ТЭНовые;
- электродные;
- индукционные;
- тепловые насосы.
Первые наиболее распространены. Их преимущества:
- доступная стоимость;
- низкие требования к теплоносителю: его необходимо лишь один раз обессолить перед первым применением;
- простой и недорогой ремонт;
- плавный пуск (предотвращает скачки напряжения в сети).
Электродные котлы стоят дешевле ТЭНовых и устроены проще. Но теплоноситель пользователю приходится готовить по рецепту. При этом его химический состав постоянно меняется, так что каждые 1,5 месяца требуется заливать в контур новую жидкость. Это усложняет эксплуатацию.
Оба последних вида имеют общий недостаток: их конструкция не предусматривает плавного пуска, поэтому при включении в сети возникают скачки напряжения.
Если позволяют средства, целесообразно приобрести котел, работающий по принципу теплового насоса. Использовать его выгодно. На каждый киловатт потребляемого электричества прибор выдает до 5 кВт тепла. Но денег система потребуют немалых: помимо приобретения дорогого устройства придется оплатить строительство обширного наружного теплообменника (длинный контур из труб в земле).
Как рассчитать оптимальную мощность отопительных приборов
Самый простой метод расчета необходимой мощности основывается на том, что для обогрева квадратного метра требуется потратить 100 Вт тепла. То есть на комнату в 10 м 2 нужны обогреватели суммарной мощностью в 1 кВт. Другой подход оценивает требуемую мощность, исходя из объема помещения. В усредненном случае берут 41 Вт на м 3 .
Такой подход к расчету мощности отопительных приборов усреднен и для многих случаев дает неточный результат, приводящий к лишним затратам. Ведь при таком расчете не учитываются:
- конкретные климатические условия;
- размеры окон, которые вполне могут занимать всю стену;
- использование энергосберегающих технологий, например, утеплителя или тройных стеклопакетов и так далее.
Точный расчет с учетом всех особенностей конкретного здания и его теплопотерь выполняется на основе сводов правил СП 60.13330.2020 «Отопление, вентиляция и кондиционирование воздуха СНиП 41-01-2003» и СП 50.13330.2012 «Тепловая защита зданий. Актуализированная редакция СНиП 23-02-2003 (с Изменением N 1)». В этом случае учитываются все данные по конкретному объекту и выполняется расчет необходимой мощности для него.
Максимально близкий результат, учитывающий основные характеристики здания, можно получить при расчете тепловой мощности по формуле:
- Q — требуемая мощность отопления;
- S — площадь помещения;
- К1 — коэффициент, учитывающий теплопотери через окна. Величина К1 выбирается равной 1 для двойного стеклопакета, 0,85 — для тройного, 1,27 — для одинарного;
- К2 — коэффициент, учитывающий наличие теплоизоляции здания. Он выбирается равным 1 — для кладки в два кирпича; 0,854 — при наличии дополнительной теплоизоляции и 1,27 — при незначительной теплоизоляции;
- К3 — коэффициент, учитывающий размеры окон и их соотношение с площадью помещения в процентах. При соотношении 50% выбирается равным 1,2, для 40% — 1,1, для 30% — 1, для 20% — 0,9, для 10% — 0,8;
- К4 — коэффициент, учитывающий климатические условия. При минимальных температурах — 35 0 С выбирается равным 1,5. При — 25 0 С — 1,3; при -20 0 С — 1,1; при — 15 0 С — 0,9; при — 10 0 С — 0,7;
- К5 — коэффициент, учитывающий количество стен, выходящих на улицу и, соответственно, теплопотери через них. Для четырех стен он берется равным 1,4, для трех — 1,3, для двух — 1,2, для одной — 1,1;
- К6 — коэффициент, учитывающий степень теплоизоляции помещения, находящегося выше расчетного. Он выбирается равным 1, если выше находится крыша или чердак, 0,9 — при наличии выше утепленного, но не отапливаемого помещения и 0,8 — если выше расположена квартира в многоквартирном доме или другие комнаты, то есть отапливаемое помещение;
- К7 — коэффициент, учитывающий высоту помещения. Он выбирается равным 1 для комнат с потолками на высоте 2,5 м, 1,05 — на высоте 3 м, 1,1 — на высоте 3,5 м, 1,15 — на высоте 4 м и 1,2 — для высоты в 4,5 м.
В дальнейшем надо разделить полученное значение на мощность одного выбранного вами отопительного прибора и округлить результат в большую сторону.
Расчет необходимой мощности отопления по такой формуле позволяет учесть большую часть факторов и получить качественный результат. Таким образом вы получите количество отопительных приборов, необходимое для одного помещения.
Обратите внимание, что расчет следует выполнять для каждого помещения отдельно, собственно как и для разных категорий техники. Например энергопотребление кухонной техники уже рассчитывается немного по-другому
Дополнительные параметры, которые нужно учесть
Произведя примерный расчет количества секций радиаторов отопления для своей квартиры, не забудьте его откорректировать, приняв во внимание особенности помещения. Их нужно учитывать следующим образом:
- для угловой комнаты (две стены выходят на улицу) с одним окном мощность радиатора надо увеличить на 20%, а при двух окнах – на 30%;
- если радиатор монтируется в нише под окном, его теплоотдача снизится, это компенсируется увеличением мощности на 5%;
- на 10% следует увеличить, если окна выходят на северную либо северо-восточную сторону;
- экран, для красоты закрывающий радиаторы, «крадет» 15% их теплоотдачи, которые также надо учесть при расчете.
В самом начале следует рассчитать общее значение необходимой для помещения тепловой мощности, учитывая все наличествующие параметры и факторы. И лишь затем разделить это значение на количество тепла, которое выделяет в час одна секция. Результат при дробном значении, как правило, округляется до целого в большую сторону.
Пример №2
В доме монтирован один общий прибор, а также в некоторых помещениях жилого или нежилого плана есть индивидуальные приборы. Плата за отопление в квартире будет производиться по формулам №1 и №2.
По формуле №1 расчет будет производиться следующим методом:
1,5 * 1400 = 2100 рублей
- 1,5 это объем тепла в Гкал, который был взят из того, что показывает индивидуальный прибор;
- 1400 рублей составляет тариф на оплату 1 Гкал тепла;
По формуле №2 расчет производится следующим способом:
0,025 * 75 * 1400 = 2625 рублей
- цифра 75 – это площадь квартиры;
- 0,025 Гкал – норма потребления тепла на 1 кв.м.
То, как посчитать отопление в квартире, в таком случае будет зависеть от того, имеется ли в квартире индивидуальный прибор учитывания потребляемого тепла. Вторая составляющая квитанции будет рассчитываться по формулам 10 и 13. По первой будет рассчитан размер платы за тепло, а по второй объем услуги.
(250 – 10 -5000 * 0,25 – 8 -30) * 75 / 6000 = 0,9625 Гкал
Из неизвестных показателей можно выделит такие, как:
- 10 Гкал – объем тепловой энергии, которая была потреблена помещениях нежилого типа;
- 5000 кв. м. – площадь общая всех квартир;
- 8 Гкал – это объем тепла, которое была потреблено в квартирах. Данные берутся с индивидуальных приборов.
- 30 Гкал – это объем тепла, которое необходимо на нужды горячего водоснабжения, в случае если отсутствует централизованная разводка отопления в квартире.
Чтобы посчитать стоимость оплаты в рублях, умножаем объем на установленный тариф на тепло:
0,9625 * 1 400 = 1 347, 50 руб.
Полная плата за отопление квартиры будет рассчитана таким методом:
2 100 + 1347,50 = 3 447, 50 – если система отопления квартиры имеет индивидуальный прибор;
2 625 + 1347,50 = 3 972,50 руб. – если прибора в квартире нет.
Установка счетчика тепла в квартире
Посчитай и выбери обогреватель
Теперь рассмотрим подсчет мощности обогрева с учетом желаемой разности температур по формуле: V x T x k = ккал/час, где:
- V – объем обогреваемой комнаты;
- T – разность между двумя температурами воздуха, снаружи и внутри помещения;
- k – коэффициент тепловых потерь (или тепловой изоляции). Колеблется от 4,0 (для зданий с очень плохой теплоизоляцией) до 0,6 (высокая теплоизоляция);
При расчетах необходимо учитывать формулу перевода килокалорий в кВт: 1кВт = 860 ккал/час.
Из первого примера для чугунной батареи берем объем комнаты V = 32.4 м3. Пусть температура внутри будет +20 градусов, а снаружи -12 градусов. Тогда разность температур Т = 20 – (-12) = 20 + 12 = 32.
Коэффициент теплоизоляции, k | Конструкция и изоляция помещения |
3,0 – 4,0 | Теплоизоляция отсутствует. Простые деревянные конструкции. |
2,0 – 2,9 | Небольшая теплоизоляция. Одинарная кирпичная кладка. |
1,0 – 1,9 | Средняя теплоизоляция. Двойная кирпичная кладка. |
0,6 – 0,9 | Высокий уровень теплоизоляции. Стены с двойной изоляцией. Пол, крыша и окна утеплены. |
Для нашего примера возьмем коэффициент k = 2,5. Необходимая тепловая мощность равна 32,4 х 32 х 2,4 = 1044,576 ккал/час или 1044,576 / 860 = 1,21 кВт. Таким образом, для обогрева нашей комнаты с указанной температурой понадобится обогреватель мощностью, как минимум, 1,2 кВт. Но лучше брать с запасом, например, 1,5 кВт на случай если станет холодней на улице.
Вот так, без специалистов, произведя несложный расчет, можно определить мощность автономных нагревателей различных марок и моделей(Фото 2).
Характеристики и особенности
Секрет популярности их прост: в нашей стране такой теплоноситель в сетях централизованного отопления, что даже металлы растворяет или стирает. В нем кроме огромного количества растворенных химических элементов содержится песок, частички ржавчины, отвалившиеся с труб и радиаторов, «слезы» от сварки, болты, забытые во время ремонта и еще уйма всяких вещей, неизвестно как попавших внутрь. Единственный сплав, которому все это нипочем — чугун. Также хорошо справляется с этим и нержавейка, но, сколько будет стоить такая батарея, можно только догадываться.
МС-140 — неумирающая классика
А еще один секрет популярности МС-140 — это невысокая цена. У разных производителей она имеет существенные отличия, но примерная стоимость одной секции — около 5$ (в розницу).
Достоинства и недостатки чугунных радиаторов
Понятно, что товар, который многие десятилетия не сходит с рынка, имеет какие-то уникальные свойства. К достоинствам чугунных батарей относят:
- Низкую химическую активность, которая обеспечивает длительный срок эксплуатации в наших сетях. Официально гарантийный срок от 10 до 30 лет, а срок эксплуатации — 50 лет и больше.
- Малое гидравлическое сопротивление. Только радиаторы этого типа могут стоять в системах с естественной циркуляцией (в некоторых еще ставят алюминиевые и стальные трубчатые).
- Высокая температура рабочей среды. Ни один другой радиатор не сможет выдержать температуры выше +130 o C. У большинства из них высший предел — +110 o C.
- Невысокая цена.
- Высокая теплоотдача. У всех остальных радиаторов из чугуна эта характеристика находится в разделе «недостатки». Только у МС-140 и МС-90 тепловая мощность одной секции сравнима с алюминиевыми и биметаллическими. Для МС-140 теплоотдача — 160-185 Вт (зависит от производителя), для МС 90 — 130 Вт.
- Не подвергаются коррозии при слитом теплоносителе.
МС-140 и МС-90 — разница в глубине секции
Некоторые свойства при одних обстоятельствах — это плюс, при других — минус:
- Большая тепловая инерция. Пока прогреется секция МС-140, пройти может час и больше. И все это время комната не греется. Но с другой стороны, это хорошо, если отопление отключают, или в системе использован обычный твердотопливный котел: накопленное стенками и водой тепло долго поддерживает температуру в помещении.
- Большое сечение каналов и коллекторов. С одной стороны даже плохой и грязный теплоноситель не сможет их забить и за несколько лет. Потому чистка и промывка может проводиться периодически. Но из-за большого сечения в одной секции «помещается» больше литра теплоносителя. И его нужно «гонять» по системе и нагревать, а это — лишние затраты на оборудование (более мощный насос и котел) и топливо.
«Чистые» недостатки тоже присутствуют:
Большой вес. Масса одной секции с межосевым расстоянием 500 мм от 6 кг до 7,12 кг. А так как нужны обычно от 6 до 14 штук на комнату, можно посчитать какова будет масса. И это придется носить, а еще навешивать на стену. Это еще одни недостаток: сложный монтаж. А все из-за того же веса. Хрупкость и невысокое рабочее давление. Не самые приятные характеристики
При всей массивности с изделиями из чугуна нужно обращаться осторожно: при ударе они могут лопнуть. Та же хрупкость приводит к не самому высокому рабочему давлению: 9 атм
Опрессовочное — 15-16 атм
Необходимость регулярного окрашивания. Все секции идут только грунтованные. Красить их нужно будет часто: раз в год или два
Опрессовочное — 15-16 атм. Необходимость регулярного окрашивания. Все секции идут только грунтованные. Красить их нужно будет часто: раз в год или два.
Тепловая инерция — это не всегда плохо…
Область применения
Как видите, есть более чем серьезные достоинства, но и недостатки имеются. Если все суммировать, можно определить область их использования:
- Сети с очень низким качеством теплоносителя (Ph выше 9) и большим количеством абразивных частиц (без грязевиков и фильтров).
- В индивидуальном отоплении при использовании твердотопливных котлов без автоматики.
- В сетях с естественной циркуляцией.
Сколько киловатт нужно для отопления дома?
Главными потребителями электрического тока в домах, являются освещение, приготовление еды, отопление и горячая вода.
В холодный период, важно обратить внимание на отопление дома. Электрическое отопление в доме, может быть нескольких видов:
- водяное (батареи и котел);
- чисто электрическое (конвектор, теплый пол);
- комбинированное (теплый пол, батареи и котел).
Давайте рассмотрим, варианты электрического отопления и расход электроэнергии.
- Отопление с помощью котла. Если планируется установка электрокотла, то выбор должен падать на трехфазный котел. Система котла одинаково разделяет электрическую нагрузку на фазы. Производители выпускают котлы с разной мощностью. Чтобы правильно его подобрать можно сделать упрощенный расчет, площадь дома разделить на 10. Например, если дом имеет площадь 120 м2, то для отопления понадобится котел мощностью 12 кВт. Чтобы сэкономить на электроэнергии нужно установить двухтарифный режим использования электроэнергии. Тогда ночью котел будет работать по экономному тарифу. Также в дополнении к электрокотлу нужно установить буферную емкость, которая в ночное время будет накапливать теплую воду, а днем раздавать на отопительные приборы.
- Конвекторное отопление. Как правило, конвектора устанавливаются под окна и подключают напрямую в розетку. Их количество должно соответствовать наличию окон в комнате. Специалисты рекомендуют посчитать общую сумму, на расходную мощность всех обогревательных приборов и одинаково распределить ее по всем трем фазам. Например, к первой можно подключить обогрев одного этажа. К другой фазе, весь второй этаж. К третьей фазе, присоединить кухню и санузел.Сегодня конвектора обладают усовершенствованными функциями. Так можно устанавливать желаемую температуру и выбирать время на обогрев. Для экономии можно устанавливать время и дату работы конвектора. На приборе установлена возможность «мультитарифа», которая включает обогреватель, на нужную мощность или в льготный тариф (после 23–00 и до 8–00). Расчет энергии для конвекторов аналогичен котлу в предыдущем пункте.
- Отопление с помощью теплого пола. Очень удобный вариант отопления, так как можно для каждой комнаты устанавливать желаемую температуру. В месте установки мебели, холодильника, а также ванной, монтировать теплый пол не рекомендуется. Как показывают расчеты, дом в 90 м2 с установленным конвектором и теплым полом, на одном этаже, расходует от 5,5 до 9 кВт электроэнергии.
Расчет диаметра труб отопления
Определившись с количеством радиаторов и их тепловой мощностью, можно переходить к подбору размеров подводящих труб.
Прежде чем переходить к расчету диаметра труб, стоит затронуть тему выбора нужного материала. В системах с высоким давлением придется отказаться от применения пластиковых труб. Для систем отопления с максимальной температурой выше 90 °C предпочтительнее стальная или медная труба. Для систем с температурой теплоносителя ниже 80 °C можно выбрать металлопластиковую или полимерную трубу.
Чтобы нужное количество теплоты пришло в радиатор без задержки, следует подобрать диаметры подводящих труб радиаторов так, чтобы они соответствовали расходу воды, необходимому каждой отдельно взятой зоне.
Расчет диаметра труб отопления проводится по следующей формуле:
D = √(354 × (0,86 × Q ⁄ Δt°) ⁄ V), где:
D — диаметр трубопровода, мм.
Q — нагрузка на данный участок трубопровода, кВт.
Δt° — разница температур подачи и обратки, °C.
V — скорость теплоносителя, м⁄с.
Разница температур (Δt°) десятисекционного радиатора отопления между подачей и обраткой в зависимости от скорости потока обычно варьирует в пределах 10 — 20 °C.
Минимальным значением скорости теплоносителя (V) рекомендуется считать 0,2 — 0,25 м⁄с. На меньших скоростях начинается процесс выделения избыточного воздуха, содержащегося в теплоносителе. Верхний порог скорости теплоносителя 0,6 — 1,5 м⁄с. Такие скорости позволяют избежать возникновения гидравлических шумов в трубопроводах. Оптимальным значением скорости движения теплоносителя считается диапазон 0,3 — 0,7 м⁄с.
Пример расчета диаметра труб отопления по заданным параметрам
Исходные данные:
- Комната площадью 20 м², с высотой потолков 2,8 м.
- Дом кирпичный неутепленный. Коэффициент тепловых потерь строения примем 1,5.
- В комнате есть одно окно ПВХ с двойным стеклопакетом.
- На улице -18 °C, внутри планируется +20 °С. Разница 38 °С.
Решение:
В первую очередь определяем минимально необходимую тепловую мощность по ранее рассмотренной формуле Qт(кВт×ч) = V × ΔT × K ⁄ 860.
Получаем Qт = (20 м² × 2,8 м) × 38 °С × 1,5 ⁄ 860 = 3,71 кВт×ч = 3710 Вт×ч.
Теперь можно переходить к формуле D = √(354 × (0,86 × Q ⁄Δt°) ⁄ V). Δt° — разницу температур подачи и обратки примем 20°С. V — скорость теплоносителя примем 0,5 м⁄с.
Получаем D = √(354 × (0,86 × 3,71 кВт ⁄ 20 °С) ⁄ 0,5 м⁄с) = 10,6 мм. В данном случае рекомендуется выбрать трубу с внутренним диаметром 12 мм.
Таблица диаметров труб для отопления дома
Таблица расчета диаметра трубы для двухтрубной системы отопления с расчетными параметрами (Δt° = 20 °С, плотность воды 971 кг ⁄ м³, удельная теплоемкость воды 4,2 кДж ⁄ (кг × °С)):
Диаметр трубы внутренний, мм | Тепловой поток / расход воды | Скорость потока, м/с | ||||||||||
0,1 | 0,2 | 0,3 | 0,4 | 0,5 | 0,6 | 0,7 | 0,8 | 0,9 | 1,0 | 1,1 | ||
8 | ΔW, Вт Q, кг ⁄ час | 409 18 | 818 35 | 1226 53 | 1635 70 | 2044 88 | 2453 105 | 2861 123 | 3270 141 | 3679 158 | 4088 176 | 4496 193 |
10 | ΔW, Вт Q, кг ⁄ час | 639 27 | 1277 55 | 1916 82 | 2555 110 | 3193 137 | 3832 165 | 4471 192 | 5109 220 | 5748 247 | 6387 275 | 7025 302 |
12 | ΔW, Вт Q, кг ⁄ час | 920 40 | 1839 79 | 2759 119 | 3679 158 | 4598 198 | 5518 237 | 6438 277 | 728 316 | 8277 356 | 9197 395 | 10117 435 |
15 | ΔW, Вт Q, кг ⁄ час | 1437 62 | 2874 124 | 4311 185 | 5748 247 | 7185 309 | 8622 371 | 10059 433 | 11496 494 | 12933 556 | 14370 618 | 15807 680 |
20 | ΔW, Вт Q, кг ⁄ час | 2555 110 | 5109 220 | 7664 330 | 10219 439 | 12774 549 | 15328 659 | 17883 769 | 20438 879 | 22992 989 | 25547 1099 | 28102 1208 |
25 | ΔW, Вт Q, кг ⁄ час | 3992 172 | 7983 343 | 11975 515 | 15967 687 | 19959 858 | 23950 1030 | 27942 1202 | 31934 1373 | 35926 1545 | 39917 1716 | 43909 1999 |
32 | ΔW, Вт Q, кг ⁄ час | 6540 281 | 13080 562 | 19620 844 | 26160 1125 | 32700 1406 | 39240 1687 | 45780 1969 | 53220 2250 | 58860 2534 | 65401 2812 | 71941 3093 |
40 | ΔW, Вт Q, кг ⁄ час | 10219 439 | 20438 879 | 30656 1318 | 40875 1758 | 51094 2197 | 61343 2636 | 71532 3076 | 81751 3515 | 91969 3955 | 102188 4394 | 112407 4834 |
50 | ΔW, Вт Q, кг ⁄ час | 15967 687 | 31934 1373 | 47901 2060 | 63868 2746 | 79835 3433 | 95802 4120 | 111768 4806 | 127735 5493 | 143702 6179 | 159669 6866 | 175636 7552 |
70 | ΔW, Вт Q, кг ⁄ час | 31295 1346 | 62590 2691 | 93885 4037 | 125181 5383 | 156476 6729 | 187771 8074 | 219066 9420 | 250361 10766 | 281656 12111 | 312952 13457 | 344247 14803 |
100 | ΔW, Вт Q, кг ⁄ час | 63868 2746 | 127735 5493 | 191603 8239 | 255471 10985 | 319338 13732 | 383206 16478 | 447074 19224 | 510941 21971 | 574809 24717 | 638677 27463 | 702544 30210 |
На основании предыдущего примера и данной таблицы выберем диаметр трубы отопления. Нам известно, что минимально необходимая тепловая мощность для комнаты площадью 20 м² равна 3710 Вт × час. Смотрим таблицу и ищем ближайшее значение, которое соответствует рассчитанному тепловому потоку и оптимальной скорости движения жидкости. Получаем внутренний диаметр трубы 12 мм, который при скорости движения теплоносителя 0,5 м ⁄ с обеспечит расход 198 кг ⁄ час.