Расчет пропускной способности труб.
Для точных и профессиональных расчетов необходимо использовать следующие показатели:
- Материал, из которого изготовлены трубы и другие элементы системы;
- Длина трубопровода
- Количество точек водопотребления (для системы подачи воды)
Наиболее популярные способы расчета:
1. Формула. Достаточно сложная формула, которая понятна лишь профессионалам, учитывает сразу несколько значений
Основные параметры, которые принимаются во внимание – материал труб (шероховатость поверхности) и их уклон
2. Таблица. Это более простой способ, по которому каждый желающий может определить пропускную способность трубопровода. Примером может послужить инженерная таблица Ф. Шевелева, по которой можно узнать пропускную способность, исходя из материала трубы.
3. Компьютерная программа. Одну из таких программ легко можно найти и скачать в сети Интернет. Она разработана специально для того, чтоб определить пропускную способность для труб любого контура. Для того что узнать значение, необходимо ввести в программу исходные данные, такие как материал, длина труб, качество теплоносителя и т.д.
Следует сказать, что последний способ, хоть и является самым точным, не подходит для расчетов простых бытовых систем. Он достаточно сложен, и требует знания значений самых различных показателей. Для расчета простой системы в частном доме лучше воспользоваться таблицами.
Монтаж напольного и настенного котла
Конструкция трехфазного электрокотла.
Целесообразно устанавливать электрические котлы в помещения площадью до 500 м 2. Монтаж системы отопления и подсоединение к ней котла можно выполнить самостоятельно. В настенном варианте их закрепляют с помощью анкерных болтов, а в напольном их обычно устанавливают на специальную подставку. Если у вас нет опыта установки и подключения автоматов защиты от короткого замыкания и токов утечки, то лучше обратиться к специалисту-электрику. В этом вопросе вольности недопустимы.
Сечение жил кабеля должно соответствовать требованиям, указанным в сопроводительной документации; оно зависит от мощности. Могут возникнуть проблемы с защитным заземлением. Имейте в виду, что заземление – это не просто штырь, вбитый в грунт, а устройство, от которого зависит жизнь. На контур заземления должны быть замкнуты все металлические части системы отопления.
И главное. Сопротивление заземляющего контура должно отвечать нормам для соответствующего грунта. Максимальная величина сопротивления заземления зависит от физических свойств грунта и должна быть указана в выданных разрешительных документах. Чем меньше сопротивление заземления, тем лучше. Максимальное значение не должно превышать 10 Ом. Для понижения сопротивления заземляющего контура нужно использовать медные пластины, а место заземления необходимо пропитывать соляным раствором. Величину сопротивления заземления нужно проверять перед началом отопительного сезона.
Для чего нужен тепловой расчет?
Сохранившиеся купеческие дома показывают, что всё делалось просто с запасом: окна поменьше, стены – потолще. Получалось тепло, но экономически не выгодно.
Теплотехнический расчёт позволяет строить наиболее оптимально. Материалов берётся ни больше – ни меньше, а ровно столько, сколько нужно. Сокращаются габариты строения и расходы на его возведение.
Вычисление точки росы позволяет строить так, чтобы материалы не портились как можно дольше.
При газификации объекта требуется согласование со службами. Рассчитывается годовой расход газа на отопление и общая мощность тепловых источников в гигакалориях.
Нужны расчёты при подборе элементов отопительной системы. Обсчитывается система труб и радиаторов – можно узнать, какова должна быть их протяжённость, площадь поверхности. Учитывается потеря мощности при поворотах трубопровода, на стыках и прохождении арматуры.
Полный расчет теплого водяного пола приведен в этом примере.
Сколько же электроэнергии могут потреблять бытовые электроприборы.
1. Компьютер
Расчеты, которые будут показывать сколько тратит компьютер электроэнергии, будут проводиться приблизительно, так как все зависит от мощности блока питания вашего компьютера и конкретной работы, которую выполняет компьютер в данный момент.
Например, при мощности блока компьютера от 350 до 550 Ватт, он вряд ли будет потреблять всю мощность даже при режиме полной загруженности. Также необходимо учесть монитор — от 60 до 100 Ватт. В сумме, при среднестатистическом блоке питания компьютера 450 Ватт и монитора 100 Ватт, получится 550 Ватт или 0,55 кВт электроэнергии в час. Эта цифра сильно завышена. Для приблизительного расчета можно взять максимальное значение — 0,5 квт/ч.Таким образом при использовании компьютера 4 часа в день получается 60 квт/ч в месяц. (0,5*4*30). Теперь от этих цифр можно отталкиваться, например, при использовании компьютера 8 часов в день получаем 120 квт/ч. в месяц.
2. Холодильник
В техническом паспорте на холодильник указывается потребление электроэнергии в год. В основном эта цифра находится в пределах от 230 до 450 квт/ч. Поделив это значение на 12, получим от 20 до 38 квт/ч потребления электроэнергии в месяц. Данный показатель применим лишь для идеальных условий. Количество потребляемой мощности зависит от объема холодильника и от количества находящихся в нем продуктов. Также необходимо учесть и внешние условия, зависящие от времени года.
3. Телевизор
Телевизоры бывают разные. В среднем, для расчета, будем брать 100 вт/ч. Например, при просмотре телевизора вы тратите 5 часов в день — 0,5 квт/ч. В месяц — около 15 кВт/ч. ЖК-телевизоры с большой диагональю экрана потребляют 200-50 Вт в час. Также важную роль играет яркость экрана. Соответственно, число потраченных киловатт- часов в месяц спокойно умножаем на 1,5. Получается около 23 квт/ч, но это среднее значение, не стоит про это забывать. Плазменные телевизоры с большой диагональю потребляют от 300 до 500 ватт в час. Если у вас в квартире стоит несколько разных телевизоров — суммируйте значения.
4. Стиральная машина
Чтобы, определить сколько электроэнергии потребляет стиральная машинка, необходимо знать режим стирки, массы белья и типа материала. В среднем, мощность будет колеблется от 2 до 2,5 квт/ч. Однако, редко когда машины потребляют такое количество электроэнергии. Для расчетов можно взять от 1 до 1,5 квт/ч. При стирке 2 раза в неделю по 2 часа, получаем от 16 до 24 квт/ч.
5. Чайник и утюг
Больше всего в квартире энергию потребляют — чайник и утюг. Работая минимальное количество времени, они потребляют такое же количество электроэнергии, как некоторые приборы в месяц. При мощности чайника от 1,5 до 2,5 квт/ч, пользуясь им 4 раза в день по 5 минут, получим от 20 до 25 квт/ч в месяц. С утюгом аналогичная история. Мощность, у него примерно такая же, как и у чайника, если гладить 3 раза в неделю по 1 часу, то получится от 25 до 30 квт/ч в месяц.
Здесь перечислены не все приборы потребляющие электроэнергию, к ним еще можно отнести микровольновые печи, пылесосы, зарядные устройства телефонов и ноутбуки. Также нужно учесть лампы накаливания, которые в зависимости от их количества, мощности и времени работы, могут потреблять от 50 до 100 квт/ч электроэнергии в месяц.
В итоге, путем таких вычислений, получаем приблизительный расход на электроэнергию будет колебаться от 200 до 300 квт/ч в месяц.
Многие слышали, что возросшая плата за электроэнергию — целиком и полностью ваша вина. То вы много сидите за компьютером, то слишком долго смотрите телевизор, также слишком часто гладите и стираете. Но давайте, попробуем разобраться, сколько же электроэнергии могут потреблять бытовые электроприборы.
Суть уравнения
Следует рассмотреть процесс установления теплового равновесия в теплоизолированной системе. Это такая совокупность, в которой объекты взаимодействуют только друг с другом. Простейшая система будет состоять из двух тел. Например, в термос налит сок и в него вброшен лёд. В этом случае термос является изолятором от внешнего воздействия. Пусть первое тело имеет температуру t1, а второе t2. Допустим, что t1 больше t2. Это допущение не является принципиальным, поэтому его можно использовать.
В начальный момент времени тела находятся далеко друг от друга и теплообмен между ними не происходит. Как только, они соприкоснутся — начнётся взаимодействие. Так как температура первого тела больше, то оно начнёт остывать, а второе нагреваться. Происходит теплопередача. В какой-то момент времени она прекратится и наступит тепловое равновесие. То есть температура двух тел станет одинаковой: t1 = t2.
Получившаяся температура называется равновесной. Обозначается она греческой буквой тета — θ. Так как раньше первое тело имело большую температуру, то получается, что в процессе взаимодействия оно отдало тепло. Записать это можно как Q1- — количество теплоты, отданное первым телом. Второй же объект в процессе подогрелся — увеличил температуру. Обозначить это можно как +Q2 — количество теплоты, полученное вторым телом.
Получить тепло второй объект мог только от первого тела, так как рассматриваемая система изолированная. Соответственно, и отдать определённое количество теплоты первое тело могло только второму. Отсюда можно сделать вывод, что если система теплоизолированная, то эти два количества теплоты одинаковы: Q1- = +Q2. Фактически это есть уравнение баланса.
Такая запись даётся в школьных учебниках. Но профессиональные физики записывают его в другой форме
Для термодинамики неважно, какой объект отдаёт, а какой получает тепло. Наука изучает только количество теплоты, полученное в процессе
Взяв простую аналогию с весом, когда о похудевшем человеке на два килограмма можно сказать, что он поправился на минус два кило, будет верным записать: Q1- = -Q1 или -Q1 = Q2.
Если собрать два слагаемых таким образом, чтобы они находились с одной стороны знака равенства, то можно записать: Q1 + Q2 = 0.
Необходимые характеристики
Главным узлом в отопительном котле является теплообменник
Расчет тепловой мощности очень важен, так как его результаты необходимы для определения параметров выбираемого образца отопительного оборудования. К последним традиционно относятся:
- электрическая мощность агрегата для энергозависимых моделей;
- эффективность преобразования (или КПД котла);
- производительность, определяемая как количество тепла, формируемое устройством в единицу времени.
Модели котлов, подключаемых к электросети, относятся к оборудованию с потребляемой мощностью системы отопления, приводимой к количеству сжигаемого твердого или газообразного топлива. Для независимых от электричества образов этот параметр определяется напрямую – без перерасчета на затраченную электроэнергию.
Эффективность работы любого отопительного агрегата в значительной мере зависит от правильности выбора узла, обеспечивающего преобразование тепловой энергии (теплообменника). Грамотное решение этого вопроса позволяет получить требуемую теплопроизводительность и комфортно чувствовать себя в доме даже в самые морозные дни.
Количество теплоты
Как известно, при различных механических процессах происходит изменение механической энергии W meh. Мерой изменения механической энергии является работа сил, приложенных к системе: \(~\Delta W_{meh} = A.\) При теплообмене происходит изменение внутренней энергии тела. Мерой изменения внутренней энергии при теплообмене является количество теплоты.
Количество теплоты
— это мера изменения внутренней энергии, которую тело получает (или отдает) в процессе теплообмена.
Таким образом, и работа, и количество теплоты характеризуют изменение энергии, но не тождественны энергии. Они не характеризуют само состояние системы, а определяют процесс перехода энергии из одного вида в другой (от одного тела к другому) при изменении состояния и существенно зависят от характера процесса.
Основное различие между работой и количеством теплоты состоит в том, что работа характеризует процесс изменения внутренней энергии системы, сопровождающийся превращением энергии из одного вида в другой (из механической во внутреннюю). Количество теплоты характеризует процесс передачи внутренней энергии от одних тел к другим (от более нагретых к менее нагретым), не сопровождающийся превращениями энергии.
Опыт показывает, что количество теплоты, необходимое для нагревания тела массой m
от температурыT 1 до температурыT 2, рассчитывается по формуле \(~Q = cm (T_2 — T_1) = cm \Delta T, \qquad (1)\) где c
— удельная теплоемкость вещества; \(~c = \frac{Q}{m (T_2 — T_1)}.\) Единицей удельной теплоемкости в СИ является джоуль на килограмм-Кельвин (Дж/(кг·К)).
Удельная теплоемкостьc численно равна количеству теплоты, которое необходимо сообщить телу массой 1 кг, чтобы нагреть его на 1 К.
Теплоемкость
телаC T численно равна количеству теплоты, необходимому для изменения температуры тела на 1 К: \(~C_T = \frac{Q}{T_2 — T_1} = cm.\) Единицей теплоемкости тела в СИ является джоуль на Кельвин (Дж/К).
Для превращения жидкости в пар при неизменной температуре необходимо затратить количество теплоты
\(~Q = Lm, \qquad (2)\)
где L
— удельная теплота парообразования. При конденсации пара выделяется такое же количество теплоты.
Для того чтобы расплавить кристаллическое тело массой m
при температуре плавления, необходимо телу сообщить количество теплоты \(~Q = \lambda m, \qquad (3)\) где λ
— удельная теплота плавления. При кристаллизации тела такое же количество теплоты выделяется.
Количество теплоты, которое выделяется при полном сгорании топлива массой m
, \(~Q = qm, \qquad (4)\) где q
— удельная теплота сгорания.
Единица удельных теплот парообразования, плавления и сгорания в СИ — джоуль на килограмм (Дж/кг).
Влияние способов подключения и места установки на теплоотдачу радиаторов
При расчете фактической мощности радиаторов следует знать, что теплоотдача приборов также зависит и от способа размещения. Фактическая мощность, полученная в результате расчетов, показывает какое количество тепла радиатор отдаст при расчетных параметрах теплоносителя, грамотной схеме подключения, сбалансированной системе отопления, а также при установке открыто на стене или под окном без использования декоративных экранов.
Как правило, оконные проемы являются строительными элементами с максимальными потерями тепла вне зависимости от количества камер и прочих энергоэффективных показателей. Поэтому радиаторы отопления принято размещать в пространстве под окном. В таком случае радиатор, нагревая воздух в зоне установки, создает некую душирующую завесу вдоль окна, направленную вверх помещения и позволяющую отсекать поток холодного воздуха. При смешивании холодного воздуха с теплыми потоками от радиатора возникают конвективные потоки в помещении, которые позволяют увеличить скорость прогрева.
Рекомендуется устанавливать радиаторы шириной не меньше половины ширины оконного проема.
Еще одним требованием увеличить эффективность обогрева комнаты является подбор габарита радиатора относительно ширины оконного проема. Длину радиатора рекомендуется подбирать не мене половины ширины оконного проема. В противном случае будет велика вероятность образования холодных зон в непосредственной близости к окну и будет заметно снижена конвективная составляющая обогрева помещения.
Если в здании присутствует большое количество угловых комнат, то следует размещать такое количество приборов отопления, равное количеству наружных ограждающих конструкций.
Например, для помещения 1-го этажа рассматриваемого в качестве примера жилого дома площадью 8, 12 м2 следует предусматривать по 2 радиатора. Один располагается под оконными конструкциями, второй или у противоположного окна или у глухой стены, но в максимальном приближении к углу помещения. Таким образом, будет соблюден максимально равномерный прогрев всех комнат.
Если система отопления дома проектируется по вертикальной схеме, то прокладку стояков для подводки к радиаторам угловых комнат следует производить непосредственно в угловых стыках стен. Это позволит дополнительно прогревать наружные строительные конструкции и предотвратить отсыревание и порчу отделочных материалов в углах.
В случае установки радиаторов под окнами с использованием дополнительных декоративных элементов (экранов, широких подоконников) или установки в нишах для расчета фактической мощности отопительных приборов необходимо пользоваться следующими поправочными коэффициентами:
- Узкий подоконник не перекрывает радиатор по глубине, но лицевая панель прибора отопления закрыта декоративным экраном (расстояние между стеной и экраном не менее 250 мм) – Ккорр=0,9.
- Широкий подоконник полностью перекрывает глубину радиатора, декоративный экран закрывает лицевую панель (расстояние между стеной и экраном не менее 250 мм), но в верхней части оставлена щель, равная 100 мм по вертикали – Ккорр=1,12.
- Широкий подоконник полностью перекрывает радиатор по глубине, дополнительные декоративные конструкции отсутствуют – Ккорр=1,05.
Из рассмотренных выше вариантов установки приборов отопления видно, что для того чтобы уровень конвекции не был снижен следует оставлять воздушные зазоры со всех сторон приборов отопления. Минимальными расстояниями от финишного уровня напольного покрытия и от подоконника до прибора отопления должно составлять не менее 100 мм, а зазор между стеной и задней поверхностью радиатора не менее 30 мм.
Различают одностороннее подключение радиаторов к системам отопления и разностороннее, когда трубопроводы подводят к прибору с противоположных сторон. Односторонний способ является наиболее экономичным и удобным с точки зрения дальнейшей эксплуатации приборов отопления. Подключение радиаторов с разных сторон немного увеличивает их теплоотдачу, но на практике этот способ используют при установке отопительных приборов более 15-ти секций или при подключении нескольких радиаторов в связке.
Теплосъем от радиаторов зависит также и от точки подвода подающего трубопровода. При подключении по схеме «сверху-вниз», когда горячая вода подводится к верхнему патрубку, а обратка к нижнему, теплопередача от радиатора увеличивается. При подключении «снизу-вверх» тепловой поток снижается, при этом прогрев радиаторов осуществляется неравномерно, а типоразмер приборов должен быть значительно увеличен для достижения расчетной мощности.
Пример расчета
Чтобы было проще понять представленную методику, следует рассмотреть расчет на конкретном примере. Например, необходимо определить увеличение потребления энергии в силовом трансформаторе 630 кВА. Исходные данные проще представить в виде таблицы.
Обозначение | Расшифровка | Значение |
---|---|---|
НН | Номинальное напряжение, кВ | 6 |
Эа | Активная электроэнергия, потребляемая за месяц, кВи*ч | 37106 |
НМ | Номинальная мощность, кВА | 630 |
ПКЗ | Потери короткого замыкания трансформатора, кВт | 7,6 |
ХХ | Потери холостого хода, кВт | 1,31 |
ОЧ | Число отработанных часов под нагрузкой, ч | 720 |
cos φ | Коэффициент мощности | 0,9 |
На основе полученных данных можно произвести расчет. Результат измерения будет следующий:
К² = 4,3338
П = 0,38 кВТ*ч
% потерь составляет 0,001. Их общее число равняется 0,492%.
Измерение полезного действия
При расчете потерь определяется также показатель полезного действия. Он показывает соотношение мощности активного типа на входе и выходе. Этот показатель рассчитывают для замкнутой системы по следующей формуле:
КПД = М1/М2, где М1 и М2 – активная мощность трансформатора, определяемая измерением на входном и исходящем контуре.
Выходной показатель рассчитывается путем умножения номинальной мощности установки на коэффициент мощности (косинус угла j в квадрате). Его учитывают в приведенной выше формуле.
В трансформаторах 630 кВА, 1000 кВА и прочих мощных устройствах показатель КПД может составлять 0,98 или даже 0,99. Он показывает, насколько эффективно работает агрегат. Чем выше КПД, тем экономичнее расходуется электроэнергия. В этом случае затраты электроэнергии при работе оборудования будут минимальными.
Рассмотрев методику расчета потерь мощности трансформатора, короткого замыкания и холостого хода, можно определить экономичность работы аппаратуры, а также ее КПД. Методика расчета предполагает применять особый калькулятор или производить расчет в специальной компьютерной программе.
Расчет тепловой мощности: формула
Рассмотрим формулу и приведем примеры, как произвести расчет для зданий с разным коэффициентом рассеивания.
Vx(дельта)TxK= ккал/ч (тепловая мощность), где:
- Первый показатель «V» – объем рассчитываемого помещения;
- Дельта «Т» – разница температур – это та величина, которая показывает насколько градусов внутри помещения теплее, чем снаружи;
- «К» – коэффициент рассеивания (его еще называют «коэффициент пропускания тепла»). Величина берется из таблицы. Обычно цифра колеблется от 4 до 0,6.
Примерные величины коэффициента рассеивания для упрощенного расчёта
- Если это неутепленный металлопрофиль или доска то «К» будет = 3 – 4 единицы.
- Одинарная кирпичная кладка и минимальное утепление – «К» = от 2 до 3-ёх.
- Стена в два кирпича, стандартное перекрытие, окна и
- двери – «К» = от 1 до 2.
- Самый теплый вариант. Стеклопакеты, кирпичные стены с двойным утеплителем и т. п. – «К» = 0,6 – 0,9.
Преимущества и недостатки
Как и любая бытовая техника, тепловентиляторы имеют свои плюсы и минусы.
Достоинства | Недостатки |
Быстрый нагрев | Относительно высокая шумность обусловленная работой вентилятора |
Высокая теплоотдача | Невысокая мощность при обычном вентилировании помещения без нагрева сравнимая с маломощным настольным вентилятором |
Небольшие габариты и вес | Модели с проволочным нихромом сжигают кислород |
Простота в эксплуатации | Возможно появление неприятного запаха при первом применении после длительного простоя — отгорает пыль |
Мобильность (за исключением стационарных моделей) | |
Возможность установки в любом помещении |
Энергопотребление подобных устройств сложно отнести к какой-либо категории т.к. если брать отдельно тепловентилятор и использовать его круглосуточно, он «сожжёт» много электроэнергии. Нет такого обогревающего устройства, которое бы потребляло мало электричества все приборы, будь то конвектор, электробатарея, обычный обогреватель или сплит-система очень «прожорливы».
В каких случаях производят расчет тепловой нагрузки
- для оптимизации расходов на отопление;
- для сокращения расчетной тепловой нагрузки;
- в том случае если изменился состав теплопотребляющего оборудования (отопительные приборы, системы вентиляции и т.п.);
- для подтверждения расчетного лимита по потребляемой теплоэнергии;
- в случае проектирования собственной системы отопления или пункта теплоснабжения;
- если есть субабоненты, потребляющие тепловую энергию, для правильного ее распределения;
- В случае подключения к отопительной системе новых зданий, сооружений, производственных комплексов;
- для пересмотра или заключения нового договора с организацией, поставляющей тепловую энергию;
- если организация получила уведомление, в котором требуется уточнить тепловые нагрузки в нежилых помещениях;
- если организация нее имеет возможности установить приборы учета теплоэнергии;
- в случае увеличения потребления теплоэнергии по непонятным причинам.
На каком основании может производиться перерасчет тепловой нагрузки на отопление здания
Приказ Министерства Регионального Развития № 610 от 28.12.2009 “Об утверждении правил установления и изменения (пересмотра) тепловых нагрузок” (Скачать) закрепляет право потребителей теплоэнергии производить расчет и перерасчет тепловых нагрузок. Так же такой пункт обычно присутствует в каждом договоре с теплоснабжающей организацией. Если такого пункта нет, обсудите с вашими юристами вопрос его внесения в договор.
Но для пересмотра договорных величин потребляемой тепловой энергии должен быть предоставлен технический отчет с расчетом новых тепловых нагрузок на отопление здания, в котором должны быть приведены обоснования снижения потребления тепла. Кроме того, перерасчет тепловых нагрузок производиться после таких мероприятий как:
- капитальный ремонт здания;
- реконструкция внутренних инженерных сетей;
- повышение тепловой защиты объекта;
- другие энергосберегающие мероприятия.
Необходимые характеристики
Главным узлом в отопительном котле является теплообменник Расчет тепловой мощности очень важен, так как его результаты необходимы для определения параметров выбираемого образца отопительного оборудования. К последним традиционно относятся:
- электрическая мощность агрегата для энергозависимых моделей;
- эффективность преобразования (или КПД котла);
- производительность, определяемая как количество тепла, формируемое устройством в единицу времени.
Модели котлов, подключаемых к электросети, относятся к оборудованию с потребляемой мощностью системы отопления, приводимой к количеству сжигаемого твердого или газообразного топлива. Для независимых от электричества образов этот параметр определяется напрямую – без перерасчета на затраченную электроэнергию.
Эффективность работы любого отопительного агрегата в значительной мере зависит от правильности выбора узла, обеспечивающего преобразование тепловой энергии (теплообменника). Грамотное решение этого вопроса позволяет получить требуемую теплопроизводительность и комфортно чувствовать себя в доме даже в самые морозные дни.
Необходимые характеристики
Главным узлом в отопительном котле является теплообменник Расчет тепловой мощности очень важен, так как его результаты необходимы для определения параметров выбираемого образца отопительного оборудования. К последним традиционно относятся:
- электрическая мощность агрегата для энергозависимых моделей;
- эффективность преобразования (или КПД котла);
- производительность, определяемая как количество тепла, формируемое устройством в единицу времени.
Модели котлов, подключаемых к электросети, относятся к оборудованию с потребляемой мощностью системы отопления, приводимой к количеству сжигаемого твердого или газообразного топлива. Для независимых от электричества образов этот параметр определяется напрямую – без перерасчета на затраченную электроэнергию.
Эффективность работы любого отопительного агрегата в значительной мере зависит от правильности выбора узла, обеспечивающего преобразование тепловой энергии (теплообменника). Грамотное решение этого вопроса позволяет получить требуемую теплопроизводительность и комфортно чувствовать себя в доме даже в самые морозные дни.