Устройство и технические характеристики электрического автомата

Что такое автоматический выключатель

Автоматический выключатель — это устройство, предназначенное для защиты проводки от токов короткого замыкания и перегрузки. Подобные аппараты устанавливаются на электрическом вводе в любую квартиру или электроустановку. Их использование является обязательным по правилам ПУЭ.


Вводной автомат в электрощите

Выдержка из ПУЭ (пункт 3.1.5). «В качестве аппаратов защиты должны применяться автоматические выключатели или предохранители. Для обеспечения требований быстродействия, чувствительности или селективности допускается при необходимости применение устройств защиты с использованием выносных реле…».

По числу полюсов силовой цепи выделяют автоматические выключатели следующих типов:

  • однополюсные:
  • двухполюсные;
  • трехполюсные;
  • четырехполюсные.

Пример 1. Расчет вводного автомата дома

Примеры расчета автоматических выключателей начнем с частного дома, а именно рассчитаем вводной автомат. Исходные данные:

  • Напряжение сети Uн = 0,4 кВ;
  • Расчетная мощность Рр = 80 кВт;
  • Коэффициент мощности COSφ = 0,84;

1-й расчет:

Чтобы выбрать номинал автоматического выключателя считаем номинал тока нагрузки данной электросети:

Iр = Рр / (√3 × Uн × COSφ) Iр = 80 / (√3 × 0,4 × 0,84) = 137 А

2-й расчет

Чтобы избежать, ложное срабатывание автомата защиты, номинальный ток автомата защиты (ток срабатывания теплового расцепителя) следует выбрать на 10% больше планируемого тока нагрузки:

  • Iток.расцепителя = Iр × 1,1
  • Iт.р = 137 × 1,1 = 150 А

Итог расчета: По сделанному расчету выбираем автомат защиты (по ПУЭ-85 п. 3.1.10) с током расцепителя ближайшим к расчетному значению:

I ном.ав = 150 Ампер (150 А).

Такой выбор автомата защиты позволит стабильно работать электрической цепи дома в рабочем режиме и срабатывать, только в аварийных ситуациях.

Принцип действия автоматического выключателя

Теперь разберемся, как работает автомат защиты сети. Подключение его осуществляется подъемом вверх рукоятки управления. Чтобы отключить АВ от сети, рычаг опускают вниз.

Когда автомат защитный электрический функционирует в обычном режиме, то электрический ток при поднятой вверх рукоятке управления поступает к аппарату через подсоединенный к верхней клемме кабель питания. Поток электронов идет к неподвижному контакту, а от него – к подвижному.

Затем по гибкому проводнику ток поступает на соленоид электромагнитного расцепителя. С него по второму гибкому проводнику электричество идет к биметаллической пластине, входящей в тепловой расцепитель. Пройдя по пластине, поток электронов через нижнюю клемму уходит в подключенную сеть.

Особенности работы теплового расцепителя

При превышении током цепи, в которой установлен автомат защиты, номинала устройства возникает перегрузка. Поток электронов высокой мощности, проходя через биметаллическую пластину, оказывает на нее термическое воздействие, делая более мягкой и заставляя выгнуться в сторону отключающего элемента. При вступлении последнего в контакт с пластиной происходит срабатывание автомата, и подача тока в цепь прекращается. Таким образом, тепловая защита позволяет не допустить чрезмерного нагревания проводника, которое может привести к расплавлению изоляционного слоя и выходу проводки из строя.

Нагревание биметаллической пластины до такой степени, чтобы она изогнулась и вызвала срабатывание АВ, происходит в течение определенного времени. Оно зависит от того, насколько величина тока превышает номинал автомата, и может занять как несколько секунд, так и час.

Срабатывание теплового расцепителя происходит в случае превышения током цепи номинала автомата как минимум на 13%. После остывания биметаллической пластины и нормализации величины текущего тока защитное устройство можно будет снова включить.

Существует еще один параметр, способный повлиять на срабатывание АВ под воздействием теплового расцепителя – это температура окружающей среды.

Если воздух в помещении, где установлен аппарат, имеет высокую температуру, то пластина нагреется до отключающего предела быстрее, чем обычно, и может сработать даже при незначительном возрастании тока. И наоборот, если в доме холодно, нагревание пластинки будет происходить медленнее, и время до отключения цепи увеличится.

Срабатывание теплового расцепителя, как было сказано, требует определенного времени, в течение которого ток цепи может прийти в норму. Тогда перегрузка исчезнет, и отключения устройства не произойдет. Если же величина электротока не снижается, автомат обесточивает цепь, предотвращая оплавление изоляционного слоя и не допуская возгорания кабеля.

Причиной перегрузки чаще всего становится включение в цепь устройств, суммарная мощность которых превышает расчетную для конкретно взятой линии.

Нюансы электромагнитной защиты

Электромагнитный расцепитель предназначен для защиты сети от короткого замыкания и по принципу работы отличается от теплового. Под действием сверхтоков КЗ в соленоиде возникает мощное магнитное поле. Оно сдвигает в сторону сердечник катушки, который размыкает силовые контакты защитного устройства, воздействуя на механизм расцепителя. Питание линии прекращается, благодаря чему исчезает опасность возгорания проводки, а также разрушения замкнувшей установки и автоматического выключателя.

Поскольку в случае КЗ в цепи происходит мгновенное возрастание тока до величины, способной за короткое время привести к тяжелым последствия, срабатывание автомата под воздействием электромагнитного расцепителя происходит за сотые доли секунды. Правда, при этом ток должен превысить номинал АВ в 3 и более раза.

Наглядно про автоматические выключатели на видео:

Дугогасительная камера

Когда контакты цепи, через которую протекает электрический ток, размыкаются, между ними возникает электрическая дуга, мощность которой прямо пропорциональна величине сетевого тока. Она оказывает на контакты разрушающее воздействие, поэтому для их защиты в состав устройства входит дугогасительная камера, представляющая собой набор пластинок, установленных параллельно друг другу.

При контакте с пластинами происходит дробление дуги, в результате чего снижается ее температура и происходит затухание. Газы, возникшие при появлении дуги, через специальное отверстие удаляются из корпусной части защитного устройства.

Устройство и принцип работы автоматического выключателя.

На рисунке ниже представлено устройство автоматического выключателя с комбинированным расцепителем, т.е. имеющий и электромагнитный и тепловой расцепитель.

  • 1 — корпус;
  • 2,3 — нижняя и верхняя винтовые клеммы для подключения провода;
  • 4 — неподвижный контакт;
  • 5 — подвижный контакт;
  • 6 — дугогасительная камера;
  • 7 — гибкий проводник (применяется для соединения подвижных частей автоматического выключателя);
  • 8 — механизм взвода и расцепления
  • 9 — катушка электромагнитного расцепителя;
  • 10 — рычаг управления;
  • 11 — тепловой расцепитель (биметаллическая пластина);
  • 12 — регулировочный винт;

Синими стрелками на рисунке показано направление протекания тока через автоматический выключатель.

Основными элементами автоматического выключателя являются электромагнитный и тепловой расцепители:

Электромагнитный расцепитель обеспечивает защиту электрической цепи от токов короткого замыкания. Он представляет из себя катушку с находящимся в ее центре сердечником который установлен на специальной пружине, ток в нормальном режиме работы проходя по катушке согласно закону электромагнитной индукции создает электромагнитное поле которое притягивает сердечник внутрь катушки, однако силы этого электромагнитного поля не хватает что бы преодолеть сопротивление пружины на которой установлен сердечник.

При коротком замыкании ток в электрической цепи мгновенно возрастает до величины в несколько раз превышающей номинальный ток автоматического выключателя, этот ток короткого замыкания проходя по катушке электромагнитного расцепителя увеличивает электромагнитное поле воздействующее на сердечник до такой величины, что его силы втягивания хватает на то что бы преодолеть сопротивление пружины, перемещаясь внутрь катушки сердечник размыкает подвижный контакт автоматического выключателя обесточивая цепь:

При коротком замыкании (т.е. при мгновенном возрастании тока в несколько раз) электромагнитный расцепитель отключает электрическую цепь за доли секунды.

Тепловой расцепитель обеспечивает защиту электрической цепи от токов перегрузки. Перегрузка может возникнуть при включении в сеть электрооборудования общей мощностью превышающей допустимую нагрузку данной сети, что в свою очередь может привести к перегреву проводов разрушению изоляции  электропроводки и выходу ее из строя.

Тепловой расцепитель представляет из себя биметаллическую пластину. Биметаллическая пластина — эта пластина спаянная из двух пластин различных металлов (металл «А» и металл «В» на рисунке ниже) имеющих разный коэффициент расширения при нагреве.

При прохождении по биметаллической пластине тока превышающего номинальный ток автоматического выключателя пластина начинает нагреваться, при этом металл «B» имеет больший коэффициент расширения при нагреве, т.е. при нагреве он расширяется быстрее чем металл «A», что приводит к искривлению биметаллической пластины, искривляясь она воздействует на механизм расцепителя, который размыкает подвижный контакт.  В простой схеме это выглядит так:

Время срабатывания теплового расцепителя зависит от величины превышения тока электросети номинального тока автомата, чем больше это превышение тем быстрее сработает расцепитель.

Как правило тепловой расцепитель срабатывает при токах в 1,13-1,45 раз превышающих номинальный ток автоматического выключателя, при этом токе превышающем номинальный в 1,45 раза тепловой расцепитель отключит автомат через 45 мин — 1 час.

Время срабатывания автоматических выключателей определяется по их время-токовым характеристикам (ВТХ)

При любом отключении автоматического выключателя под нагрузкой на подвижном контакте образуется электрическая дуга которая оказывает разрушающее воздействие на сам контакт, причем чем выше отключаемый ток, тем мощнее электрическая дуга и тем большее ее разрушающее воздействие. Для сведения к минимуму ущерба от электрической дуги в автоматическом выключателе она направляется в дугогасительную камеру, которая состоит из отдельных, параллельно установленных пластин, попадая между этих пластин электрическая дуга дробится и затухает.

Характеристика отключения

Данный показатель определяет чувствительность защитной автоматики (зависимость времени отключения цепи от силы тока, который через нее проходит). При одной и той же номинальной силе тока два автомата выключения / дифавтомата срабатывают с разной скоростью исходя из своей характеристики отключения.

Чаще всего встречаются приборы, время-токовая характеристика которых описывается кривыми отключения B, C, D, K.

  • Кривая отключения B – 3-5 значений номинального тока. Такое оборудование является наиболее чувствительным к токам короткого замыкания. Оптимальный выбор для защиты домашней техники с минимальными пусковыми токами (тостер, электроплита, бойлер, осветительные приборы). Данной автоматикой рекомендуется защищать дорогие устройства (ПК, ЖК-телевизор).
  • Кривая отключения C – 5-10 значений номинального тока. Этот автомат менее восприимчив к изменениям силы тока. Защищает холодильник, кондиционер, пылесос, стиральную машину и другие приборы со средними пусковыми токами.
  • Кривая отключения D – 10-20 значений номинального тока. Подобный автомат еще менее чувствителен к колебаниям силы тока. Используется для защиты насосов, станков, компрессоров и другого промышленного оборудования с высокими пусковыми токами. Устанавливается и в распределительных щитках для отключения общей сети при отказе квартирных автоматов (вводной автомат).
  • Кривая отключения K – 8-12 значений номинального тока. Такое устройство – самый «грубый» в плане чувствительности к токам короткого замыкания. Защищает электрические цепи с индуктивной нагрузкой.

Автоматическими выключателями и дифавтоматами с кривыми B и C удобно защищать отдельные линии, к которым подключены соответствующие потребители (бытовые сети). Устройства с кривой C пригодятся для мастерских и гаражей. Приборы с кривой D в быту применяются сравнительно редко.

Важно: выбирая аппарат по характеристике отключения, учитывайте длину и сечение жилы кабеля для питания электросети (длинная и тонкая – прибор с кривой B, короткая и толстая – устройство с кривой C и D)

Конструкционные особенности

Кабель-каналы для электропроводки: виды, типы, размеры, применение

Разъединитель предохранителей и его эквивалентный конкурент

Главным конкурентом плавкого предохранителя является автомат защиты, отличительной чертой которого является простота в использовании.

Недостатки

  • Возможность использования только один раз.
  • Большим недостатком плавких предохранителей является конструкция, дающая возможность шунтирования, то есть использования «жучков», приводящих к пожарам.
  • Возможность необоснованной замены на предохранитель номиналом выше.
  • Возможный перекос фаз в трёхфазных электроцепях при больших токах.
  • В цепях трёхфазных электродвигателей при сгорании одного предохранителя инициируется пропадание одной фазы, что может привести к выходу из строя электродвигателя (рекомендуется использовать реле контроля фаз).

Преимущества

  • В асимметричных трёхфазных цепях при аварии на одной фазе, питание пропадёт только на одной фазе, а остальные две фазы продолжат дальше снабжать нагрузку (не рекомендуется такое практиковать при больших токах, так как это может привести к перекосу фаз и высоким токам по нулевому рабочему проводнику)
  • Из-за медленной скорости срабатывания, плавкие предохранители можно использовать для селективности.
  • Так же селективность самих плавких предохранителей относительно друг друга (при последовательном соединении) имеют более простой расчёт селективности, нежели у автоматического предохранителя: номинальные токи последовательно соединённых предохранителей должны отличаться друг от друга в 1,6 раз или больше.
  • Из-за более простой конструкции чем у автомата защиты, почти исключена возможность т. н. «поломки механизма» — в случае аварийной ситуации предохранитель полноценно обесточит цепь.
  • После замены плавкой вставки предохранителя в цепи получается защита с характеристиками, заявленными производителем в отличие от случая с использования автоматического выключателя с подгорающими контактами.

Медные жилы проводов и кабелей

Не только новичкам, но и бывалым электрикам сложно разобраться в многообразии кабельной продукции: марки, разновидности, материалы, функциональность. Даже поверхностное знакомство с особенностями прокладки электросетей заставляет хвататься за голову. Чтобы избежать неприятностей при дальнейшей эксплуатации электроприборов, следует внимательно изучить теоретическую часть. Все непонятные моменты нужно выяснить, а лучше обратиться к профессионалу.

Первым вопросом, на который приходится отвечать домашнему мастеру, является материал жилы. Требования ПУЭ однозначны: для внутренней проводки разрешено применять только медь. Она не так окисляется, обладает отличными эксплуатационными характеристиками.

Второй вопрос: количество жил. Кабели и провода бывают одно и многожильными. Одножильный провод медный в середине содержит всего одну проволоку. Он более жесткий, менее гибкий. Особенно сильно эти недостатки ощущаются на больших сечениях проводника. При этом теоретически его вполне можно проложить под штукатуркой, слой которой станет надежной защитой от повреждений.

Многожильные провода состоят из нескольких проволок. Наиболее часто в домашних условиях используют трехжильный медный провод. Он более пластичный, мягкий, прекрасно справляется с перегибами и поворотами

Важно понимать, что многопроволочный кабель и многожильный – это не одно и то же

Другой частой ошибкой, которую совершают новички, является путаница в понятиях сечение и диаметр кабеля. Диаметр всегда можно уточнить, померив его штангенциркулем. Затем его используют для расчета поперечной площади. Результат всегда округляют в большую сторону. Он должен совпадать с маркировкой. Однако фактический результат обычно меньше заявленного. Если расхождение минимально, то это допустимо. Большое отклонение говорит о браке, от применения такой продукции лучше отказаться.

Подбор диаметра проволоки предохранителя

Предохранитель (или плавкая вставка) предназначен для защиты приборов от короткого замыкания или перегрузки путем отключения подачи энергии. Если превышена допустимая величина, плавкий элемент расплавляется и разрывает сеть. Считается, что предохранитель нельзя ремонтировать. Однако в некоторых ситуациях можно воспользоваться быстрым и простым способом возвращения ему работоспособности. Он заключается в восстановлении целостности сети за счет присоединения медной проволоки. Чтобы такое мероприятие не привело к непоправимым последствиям, нужно правильно ее подобрать.

Диаметр медного провода для предохранителя зависит от максимально допустимого значения, который он должен пропустить. Его проще всего подобрать с помощью таблицы, в которой указаны диаметры проволоки в зависимости от ее материала и токовой нагрузки. Если под рукой нет таблиц, а также при отсутствии необходимых данных, можно провести несложные вычисления:

  • при небольших нагрузках, когда используется проволока диаметром 0,02-0,2 мм: d=IПЛ*k+0,005;
  • при больших значениях для проволоки диаметром больше 0,2 мм: d=((IПЛ) 2 /m 2 ) 1/3 .

В формуле IПЛ – значение тока, которое показывает, сколько выдерживает плавкая ставка, А; k и m – коэффициенты, определяемые в зависимости от материала проводника.

Как собрать и установить электрический щиток

Начнем с того, что в любом строительном магазине в отделе электротовары можно приобрести готовый электрический щиток, в котором установлены автоматы и прибор контроля электроэнергии. Конечно, это удобно, но есть в этом деле одна проблема – автоматы и счетчик могут не подходить под потребляемую мощность электрической сети вашего дома. Поэтому совет – собрать щиток самостоятельно. Как это сделать?

В первую очередь надо уточнить у энергоснабжающей компании вашего района, какие марки электросчетчиков они берут в эксплуатацию. Почему? Последние – это несколько моделей, которые отличаются друг от друга классом точности и мощностью. Именно эти два показателя и надо согласовать. Кстати, если в магазине есть готовый щиток с таким счетчиком, то вам повезло. Если нет, тогда придется подбирать его под размеры прибора контроля.

Что еще понадобится для сборки?

  • Медный провод длиною один метр и сечением 2,5 мм².
  • Автоматические выключатели (их количество определяется количеством входных проводов, а мощность рассчитывается согласно мощности потребителей на каждом контуре).
  • Крепежные изделия (саморезы и пластиковые дюбеля). Некоторые производители монтажные изделия поставляют в комплекте с щитком.

В первую очередь надо предварительно распределить все элементы электрического щита так, чтобы они не мешали друг другу, и чтобы не закрывали монтажные отверстия. Теперь все это закрепляется, после чего можно переходить к монтажу проводов.

Внимание! Имейте в виду, что монтаж проводов производится только вертикально или горизонтально. Никаких участков наискосок

Не будем расписывать, какая схема подключения используется в распределительном щитке

Вот один из вариантов на рисунке ниже, где все четко показано, так что ошибиться невозможно

Не будем расписывать, какая схема подключения используется в распределительном щитке. Вот один из вариантов на рисунке ниже, где все четко показано, так что ошибиться невозможно.

Единственный момент, на который необходимо обратить внимание, это нумерация или обозначение клемм электросчетчика, куда будут подключаться провода входные и выходные

Здесь важно не перепутать, какая клемма фазная, а какая нулевая. Поэтому стоит открыть инструкцию счетчика и разобраться в этом вопросе, потому что у каждой модели свои позиции

Поэтому стоит открыть инструкцию счетчика и разобраться в этом вопросе, потому что у каждой модели свои позиции

Поэтому стоит открыть инструкцию счетчика и разобраться в этом вопросе, потому что у каждой модели свои позиции.

Итак, приборы установлены и соединены проводами между собой. Остается только провести монтаж. Для этого прикладываете распределительную коробку к поверхности, на которую будет устанавливаться, и карандашом или любым другим острым инструментом (отверткой, например) делаете отметки под монтажные крепежи. Теперь в них сверлите отверстия диаметром 6 мм и глубиною 6 мм, куда загоняете дюбели. А уже через них проводите крепление щита.

Подключение

Если собрать и установить распределительный щиток можно без проблем, то подключать вы его своими руками не имеете права. Поэтому вам придется вызвать представителей энергоснабжающей организации, которые и проведут подключение, то есть, соединят счетчик контроля с вводным кабелем. Если представители сетевой компании это делать не умеют, то придется искать организацию, у которой есть лицензия и доступ к проведению данного вида работ.

Обратите внимание, что после подключения контролер должен провести пломбировку электросчетчика

И еще один момент. для того чтобы можно было бы без проблем проводит ремонт прибора контроля и его демонтаж, необходимо установить в сеть (перед ним) еще один автомат, который называется общим. Чаще всего он больших размеров и для установки в распределительный щиток не предназначен. Что делать в этом случае? Выход единственный – приобрести бокс под автомат и установить его рядом со щитком.

Измерение мощности

Измерение активной мощности в сетях производится с помощью ваттметра

В зависимости от схемы соединения нагрузки и его характера (симметричная или несимметричная) схемы подключения приборов могут разниться. Рассмотрим случай с симметричной нагрузкой:

Здесь измерение проводится всего лишь в одной фазе и далее согласно формуле умножается на три. Этот способ позволяет сэкономить на приборах и уменьшить габариты измерительной установки. Применяется, когда не нужна большая точность измерения в каждой фазе.

Измерение при несимметричной нагрузке:

Этот способ более точный, так как позволяет измерить мощность каждой фазы, но это требует трех приборов, больших габаритных размеров установки и обработки показаний с трех приборов.

Измерении в цепи без нулевого проводника:

Эта схема требует двух приборов. Этот способ основывается на первом законе Кирхгофа

IA+IB+IC=0. Из этого следует, что сумма показаний двух ваттметров равна трехфазной мощности этой цепи. Ниже показана векторная диаграмма для данного случая:

Мы можем сделать вывод, что показания приборов зависят не только от величины, но еще и от характера нагрузки.

Из диаграммы следует, что мы можем определить показание приборов аналитически:

Проанализировав полученный результат можем сделать вывод что, при преобладании активной нагрузки (φ=0) результаты измерения ваттметров тождественны (W1=W2). При активной и индуктивной (R-L)

1211122

Каковы критерии отбора оборудования

Если всё-таки отдали предпочтение дифавтомату, как продукту современных технологий, внимательно выбирайте изделие. Тщательным образом ознакомьтесь с его техническими данными

При выборе автомата по мощности нагрузки, обращают внимание на следующее:

  • напряжение и фазы: изделия по номинальному однофазному и трёхфазному типу, 220В и 360 В, соответственно. В первом вариант одна клемма, во втором – три для подключения. Все показатели указываются в паспорте на оборудование и маркируются на внешней стороне корпуса;
  • сила тока утечки: обозначается греческим символом «дельта» и исчисляется в миллиамперах. Корректно подобрать можно, основываясь на такие данные: на дом в целом – до 350 мА, на конкретную группу – 30 мА, точки и освещение – 30мА, одиночные точки – 15мА, бойлер – 10мА;
  • класс оборудования: А – сработка в результате утечки постоянного напряжения. АС – при утечке переменного тока;
  • защита от порыва «ноля»: при обнаружении подобного, система идентифицирует это как порыв и отключает оборудование;
  • время отключения: обозначается символом Tn и не должно превышать 0,3 секунды.

Для бытовых нужд наиболее распространёнными являются приборы с маркировкой «C» и диапазоном 25А. Монтаж вводных конструкций требует более мощных в виде C50, 65, 85, 95.

Розетки и прочие точки – C15, 25. Приборы освещения – C7, 12, электрическая плита – C40.

Можно сказать, что это временная характеристика максимальной кратковременной мощности тока, которую может выдержать автомат и не сработать. «C» означает, что автомат срабатывает при превышении номинального тока в 5-10 раз.

Расчет нагрузки по фазам

Допустим, у вас имеется трехфазный двигатель мощностью 1500 Вт. Соответственно, на каждую фазу приходится по 500 Вт активной мощности. Предположим, что cos фи=0,8. Полная мощность равна: 500/0,8. Получается, что 625 Вт нужно распределить на каждую фазу.

Кроме двигателя к фазам, вероятно, подключены и другие потребители. Например, кроме 500 Вт подключается освещение на 200 Вт и конвектор на 300 Вт. Все мощности суммируются по горизонтали. Реактивная мощность остается без изменений (если не используются нагрузки с реактивной составляющей).

По теореме Пифагора можно определить реактивную мощность.

Но на практике это довольно сложные расчеты. Поэтому, это рассчитывается приближенно: 625 Вт + 500 Вт = 1150 Вт. Эта сумма получается больше точных расчетов по формуле, но страшного ничего нет. Расчет произведен с небольшим запасом.

На практике для приблизительных расчетов достаточно сложить все полные мощности и по ним определить мощность автомата для требуемой нагрузки.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий