Как рассчитать сопротивление грунта под фундамент

Характеристики оснований строительных сооружений

Кроме определения опорных характеристик базового уровня, необходимо принять во внимание риски могущие привести к деформации здания. Для этого проверяют грунт по следующим параметрам:

  • плотность – определяется трудностью взятия образца;текучесть, чем легче прилипает почва к инструменту и дольше держится, тем более высока текучесть;пористость, определяют сравнением объемов измельченной породы и не измельченной;способности к набуханию, изменение объема и формы при намачивании, показывает склонность к просадкам;пучинистость, под влиянием низкой температуры в структуре образуются кристаллы льда, ведущие к изменению объема и формы почвы;способности к проседанию, возможность вертикального сдвига под действием массы при изменении физических свойств почвы.

Неспециалисту сложно точно определить строительные характеристики основания, поэтому в нормативных документах указываются минимальные значения параметров. Что позволяет избежать риска в процессе возведения зданий и повысить запас прочности строения.

Расчет фундамента зданий производят на основании:

  • типа грунта (природный или искусственный);размеров, конструкции и материала фундамента;

Расчет должен учитывать два предельных состояния основания, это:

  • несущая способность фундамента;деформационные процессы.

Используя калькулятор по расчету несущей способности земляного слоя, можно определить уровень сопротивления почвы вертикальным нагрузкам. Чем крупнее частицы, составляющие основание, тем выше несущие способности базового уровня.

Таблица: Размеры и процентное отношение частиц грунта

Разновидности грунтаРазмеры частиц, ммСодержание частиц в %Глиняныйдо 0.002—Илистый органическийдо 0,01—Илистый неорганическийот 0,002 до 0,05—Песчаный, гравелистыйболее 2от 25Песчаный, крупныйболее 0,5от 50Песчаный, среднийболее 0,25от 50Песчаный, мелкийболее 0,1от 75Песчаный пылеватыйболее 0,1до 75Валунный, глыбовыйболее 200от 50Галечниковый, щебенистыйболее 10от 50Гравийный, дресвяныйболее 2от 50

Как влияет сейсмичность на несущую способность грунта

При необходимости учета вибрационных нагрузок для постройки сейсмостойкого фундамента необходимо принимать во внимание, что при одновременном действии на грунт нагрузок от дома и вибраций происходит снижение прочности грунта, он приобретает свойства псевдожиткого состояния. Поэтому для учета возможного воздействия сейсмических нагрузок значение расчетного сопротивления делится на 1,5

Подбор типа и параметров фундаментас учетом несущей способности грунта основания позволит избежать деформаций и смещений дома.

Любое строительство зданий начинается с инженерно-геологических работ. Главная характеристика, определяемая этими работами, несущая способность грунта.

Типы грунтов

Структурный состав почвы во многом определяет ее способность выдерживать длительные нагрузки и не допускать преждевременного разрушения строения. Параметр, определяющий удерживающие способности почвы, измеряют в кг/см².

Таблица: Определение расчетного сопротивления основания (кг/м²) в зависимости от типа грунта

Тип грунтаПлотный (кг/см²)Средней плотности (кг/см²)Крупный песок с включениями гравия65Средний песок54Мелкий песок с низким содержанием влаги43Влажный мелкий песок32Сухая супесь32,5Пластичная супесь2,52Сухой суглинок32Пластичный суглинок31Сухая глина62,5Пластичная глина41

Как видно из таблицы, влажность и плотность почвы сильно влияют на ее удерживающие возможности. Упрощенный расчет фундамента в индивидуальном строительстве производят, принимая несущую способность грунта ≈2 кг/м².

Закладка фундамента на пучинистом грунте

Самым надежным и не подверженным сезонным изменениям является скалистое основание. Но, технический монтаж фундаментов в таких местностях достаточно сложен. Забивные сваи в скальных основаниях использовать не рекомендуется.

Таблица средней несущей способности различных грунтов

Далее следует таблица с указанием средних цифр несущей способности или, как её ещё называют, расчетного сопротивления разных типов грунта в кгс/см².

Более точные расчеты с учётом всех коэффициентов, которые отображают влияние каждого существующего в реальных условиях фактора, можно выполнить следуя рекомендациям в нормативном своде правил за 2011 год СП 22.13330.2011 с названием Основания зданий и сооружений. Это официальное издание более старого стандарта СНиП 2.02.01-83*, выполненное научно-исследовательским институтом имени Н.М. Герсеванова.

В приведенной таблице отображены усреднённые результаты расчётов, проведенных с использованием формул и данных, основанных на описанном выше своде правил 2011 года.

Здесь можно видеть, что существует достаточно большой разброс в показателях сопротивления грунта. Это обусловлено в первую очередь влажностью почвы, которая непосредственно зависит от уровня залегания грунтовых вод.

Если нужно получить цифры в МПа или в Н/см², то можно перевести указанные в таблице значение согласно установленным соотношениям величин.

  • 1 кгс/см² = 0,098 МПа или 1 МПа = 10,2 кгс/см²
  • 1 кгс/см² = 9.8 Н/см² или 1 Н/см² = 0.102 кгс/см²

Для удобства существует также таблица, где указаны средние цифры расчетного сопротивления грунта в Н/см²

Аналогичная проблема с таблицами подобного рода — очень существенное различие между минимальными и максимальными значениями. В общем случае рекомендуется брать минимальные показатели, которые указаны в табличных данных. Для примера разместим ещё одну таблицу, наглядно иллюстрирующую подход зарубежных специалистов к обнародованию данных своих исследований.

Очевидно, что табличные цифры используются, как правило, теми, кто принял решение не заказывать профессиональное геологическое исследование почвы на своём участке. Поэтому имеет смысл давать показатели с запасом, чтобы при самостоятельных расчетах, даже если в них закрадется небольшая погрешность, это не привело к непоправимым последствиям.

В то же время даже при значительном запасе по прочности не факт, что конструкция здания будет достаточно стабильно стоять на основании в течение десятков лет. За такой срок качество грунта может измениться, если не были соблюдены соответствующие меры по защите фундамента от скопления осадочных вод. Для этих целей обязательно следует изготавливать отмостку с хорошей гидроизоляцией и дренажную систему по периметру постройки для централизованного сбора стоков.

Какие нагрузки влияют на фундамент?

На фундамент дома влияют различные нагрузки: постоянные и временные, возникающие в силу каких-либо обстоятельств.

В общем виде все типы нагрузок на фундамент можно классифицировать по четырем основным направлениям:

  • масса всех элементов конструкции возводимого дома;
  • так называемая полезная масса, состоящая из всех предметов мебели и интерьера, которые будут находиться в здании;
  • фундаментальные нагрузки или масса самого фундамента;
  • временные нагрузки, которые зависят от климатических условий местности, где строится здание – количество осадков в виде дождя и снега, сила и скорость ветра.

Формула Терцаги

Формула Терцаги описывает закономерность уплотнения грунтов и их компрессионное сжатие. Для исследования грунтов редко выбирают метод трехосного сжатия ввиду его сложности, метод одноосного сжатия можно применять лишь к узкому кругу грунтов. Именно поэтому Терцаги рассматривает одноосное сжатие в жесткой таре, где стенки не дают образцу деформироваться.

По мере уплотнения, то есть сокращения объема полостей, давление возрастает. В результате становится понятно, то сумма деформаций образца составляется из пластической и остаточной деформации. (ξ1= ξp+ ξв)

Рис. 4 График нагружения грунта

При выполнении повторного нагружения основанию передаются только упругие деформации.

Таблица средней несущей способности различных грунтов

Далее следует таблица с указанием средних цифр несущей способности или, как её ещё называют, расчетного сопротивления разных типов грунта в кгс/см².

Более точные расчеты с учётом всех коэффициентов, которые отображают влияние каждого существующего в реальных условиях фактора, можно выполнить следуя рекомендациям в нормативном своде правил за 2011 год СП 22.13330.2011 с названием Основания зданий и сооружений. Это официальное издание более старого стандарта СНиП 2.02.01-83*, выполненное научно-исследовательским институтом имени Н.М. Герсеванова.

В приведенной таблице отображены усреднённые результаты расчётов, проведенных с использованием формул и данных, основанных на описанном выше своде правил 2011 года.

Здесь можно видеть, что существует достаточно большой разброс в показателях сопротивления грунта. Это обусловлено в первую очередь влажностью почвы, которая непосредственно зависит от уровня залегания грунтовых вод.

Если нужно получить цифры в МПа или в Н/см², то можно перевести указанные в таблице значение согласно установленным соотношениям величин.

  • 1 кгс/см² = 0,098 МПа или 1 МПа = 10,2 кгс/см²1 кгс/см² = 9.8 Н/см² или 1 Н/см² = 0.102 кгс/см²

Для удобства существует также таблица, где указаны средние цифры расчетного сопротивления грунта в Н/см²

Аналогичная проблема с таблицами подобного рода — очень существенное различие между минимальными и максимальными значениями. В общем случае рекомендуется брать минимальные показатели, которые указаны в табличных данных. Для примера разместим ещё одну таблицу, наглядно иллюстрирующую подход зарубежных специалистов к обнародованию данных своих исследований.

Очевидно, что табличные цифры используются, как правило, теми, кто принял решение не заказывать профессиональное геологическое исследование почвы на своём участке. Поэтому имеет смысл давать показатели с запасом, чтобы при самостоятельных расчетах, даже если в них закрадется небольшая погрешность, это не привело к непоправимым последствиям.

В то же время даже при значительном запасе по прочности не факт, что конструкция здания будет достаточно стабильно стоять на основании в течение десятков лет. За такой срок качество грунта может измениться, если не были соблюдены соответствующие меры по защите фундамента от скопления осадочных вод. Для этих целей обязательно следует изготавливать отмостку с хорошей гидроизоляцией и дренажную систему по периметру постройки для централизованного сбора стоков.

Таблица средней несущей способности различных грунтов

Далее следует таблица с указанием средних цифр несущей способности или, как её ещё называют, расчетного сопротивления разных типов грунта в кгс/см².

Более точные расчеты с учётом всех коэффициентов, которые отображают влияние каждого существующего в реальных условиях фактора, можно выполнить следуя рекомендациям в нормативном своде правил за 2011 год СП 22.13330.2011 с названием Основания зданий и сооружений. Это официальное издание более старого стандарта СНиП 2.02.01-83*, выполненное научно-исследовательским институтом имени Н.М. Герсеванова.

В приведенной таблице отображены усреднённые результаты расчётов, проведенных с использованием формул и данных, основанных на описанном выше своде правил 2011 года.

Здесь можно видеть, что существует достаточно большой разброс в показателях сопротивления грунта. Это обусловлено в первую очередь влажностью почвы, которая непосредственно зависит от уровня залегания грунтовых вод.

Если нужно получить цифры в МПа или в Н/см², то можно перевести указанные в таблице значение согласно установленным соотношениям величин.

  • 1 кгс/см² = 0,098 МПа или 1 МПа = 10,2 кгс/см²
  • 1 кгс/см² = 9.8 Н/см² или 1 Н/см² = 0.102 кгс/см²

Для удобства существует также таблица, где указаны средние цифры расчетного сопротивления грунта в Н/см²

Аналогичная проблема с таблицами подобного рода — очень существенное различие между минимальными и максимальными значениями. В общем случае рекомендуется брать минимальные показатели, которые указаны в табличных данных. Для примера разместим ещё одну таблицу, наглядно иллюстрирующую подход зарубежных специалистов к обнародованию данных своих исследований.

Очевидно, что табличные цифры используются, как правило, теми, кто принял решение не заказывать профессиональное геологическое исследование почвы на своём участке. Поэтому имеет смысл давать показатели с запасом, чтобы при самостоятельных расчетах, даже если в них закрадется небольшая погрешность, это не привело к непоправимым последствиям.

В то же время даже при значительном запасе по прочности не факт, что конструкция здания будет достаточно стабильно стоять на основании в течение десятков лет. За такой срок качество грунта может измениться, если не были соблюдены соответствующие меры по защите фундамента от скопления осадочных вод. Для этих целей обязательно следует изготавливать отмостку с хорошей гидроизоляцией и дренажную систему по периметру постройки для централизованного сбора стоков.

Каким должен быть грунт под фундамент

Соответствие технологии строительства особенностям почвы обеспечивает устойчивость несущих конструкций дома, безопасность и надежность жилья в целом. Если фундамент подобран неправильно, даже при проведении работ по его укреплению есть большая вероятность, что здание станет аварийным через несколько лет эксплуатации:

  • накренится;
  • просядет;
  • в стенах появятся трещины, что в конечном итоге может привести к обрушению.

В идеале основание под фундамент должно отличаться такими качествами:

  • равномерной и незначительной сжимаемостью за счет чего исключается проседание дома;
  • стойкостью к грунтовым водам, что убережет фундамент от влияния влаги;
  • неподвижностью и хорошей несущей способностью для обеспечения устойчивости дома;
  • противостоянию вспучиванию (способность увеличиваться в объеме при промерзании и уменьшаться в плюсовую температуру), которое может повлечь деформацию и разрушение фундамента.

Типы почв для строительства фундамента дома.

В жилищном строительстве популярностью пользуются следующие технологии закладывании основания для сооружения:

Ленточный фундамент – это железобетонная конструкция в виде замкнутого контура, расположенная под всеми несущими стенами дома. Отличается хорошими эксплуатационными качествами, оптимальной трудоемкостью и затратностью. Может сооружаться из готовых железобетонных блоков или заливаться раствором на месте строительства. Для усиления конструкции используют стержни арматуры.

Ленточный и столбчатый фундамент.

Столбчатый фундамент – представляет собой опорные конструкции в виде столбов, которые устанавливаются под несущими стенами, под их пересечениями и на углах. По сравнению с предыдущей технологией обходится дешевле, но применяется для сравнительно легких зданий без подвалов, сооружаемых на качественной, устойчивой почве.

Плитный (монолитный) фундамент – в качестве основания дома используют цельную площадку из железобетона. К этой технологии относится утепленная шведская плита – малозаглубленная конструкция со слоем утеплителя. Монолит сравнительно простой в монтаже, но затратный из-за большого расхода материала. Этот фундамент еще называют плавающим, так как он, располагаясь практически сверху грунта, опускается, поднимается и перемещается вместе с почвой.

Плитный и свайный фундамент.

Свайный фундамент – это набивные, забивные или винтовые опоры, установленные вглубь грунта, на которых крепится дом. В качестве опорных конструкций могут использоваться железобетонные, железные и деревянные изделия. Конструкция напоминает столбчатый фундамент, но сваи устанавливаются на глубину нескольких метров, поэтому применяются в местности с неустойчивыми грунтами.

Комбинированный фундамент – сочетает в себе разные технологии строительства. Сооружается такой фундамент с целью создания прочного основания, оптимизировав затраты. Объединение нескольких технологий находит широкое применение при строительстве домов в нестандартных условиях, например, на склонах или на неустойчивых почвах.

Комбинированный фундамент.

Расчет нагрузки на фундамент

В качестве примера для расчета будет рассмотрено одноэтажное здание 6X8 метров с высотой потолков 3 метра, длина простенков в доме составляет 10 метров, а толщина 0,1 м. Нагрузка на фундамент рассчитывается следующим образом. Длина стен равна:

После этого вычисляется объем стен, в данном случае считается, что они все толщины 10 см:

V=L*H*T V=38*3*0.1=11.4 м3.

Из таблиц берется коэффициент плотности материала P, из которого выполнены стены, и масса стен обсчитывается по формуле:

Вес перекрытий и кровли высчитывается при помощи таблиц, умножая их предварительно высчитанную площадь на удельный вес материала, из которого они состоят.

Что такое несущая способность грунта

Перед тем как заливать фундамент, рекомендуется проверить несущую способность грунта

Предел несущей способности должен быть больше действующей нагрузки на основание. Условный расчет делают на выбранную единицу площади так, чтобы не происходили деформации в почве и здании. Геологические изыскания проводят для определения вида грунта путем взятия проб из скважин на месте строительства.

Несущая характеристика зависит от обстоятельств и факторов:

  • типа почвы;
  • толщины слоя, глубины его залегания и напластования различных видов;
  • свойств нижнего пласта под исследуемым грунтом;
  • отметки стояния почвенной жидкости;
  • глубины, на которую промерзает земля;
  • плотности основания.

Грунтовая влага меняет свойства почвы, поэтому одну породу характеризуют по-разному в зависимости от насыщения жидкостью. Почва легко впитывает жидкость, и любые слои, контактирующие с водой, считаются напитанными влагой. Увеличивается показатель текучести и уменьшается значение сопротивления, исключение составляют крупнообломочные породы, крупные и средние пески.

Коэффициент плотности говорит о пористости грунта. Земля включает твердые элементы, между ними есть воздушные каверны, которые заполняются водой или воздухом при разных обстоятельствах. Наиболее прочными являются плотные почвенные слои с малым числом пустот.

Перед составлением проекта исследуют толщу земли ниже подошвы опоры строения. Плотность увеличивается с углублением, т.к. вверху располагаются рыхлые слои, а нижележащие породы старше, надежнее и компактнее.

Нельзя проводить стройку на границе двух разных типов грунта

Строительные правила (СП) закладки фундамента с учетом сопротивления:

  • не проектируют опоры на рубеже двух разных почвенных слоев или вблизи от них;
  • идеальной считают горизонтально расположенную полосу одной породы;
  • грунт не сможет нести большую нагрузку вблизи отметки грунтовой жидкости, на крутых склонах;
  • на местности с малыми показателями прочности проводят дополнительное увеличение несущей способности.

Для чего нужно определять несущую способность

Грунт состоит из твердых частиц и пор, заполненных водой или воздухом. Под действием нагрузки от дома объем грунта меняется за счет изменения объема пор – он уплотняется, а его пористость сокращается.

При расчете нагрузок интерес для строителя представляют предельные нагрузки, т. е. нагрузки, увеличение которых приводит к потере устойчивости массива грунта.

Чаще всего нарушенное состояние равновесия приводит к большой осадке грунта  и его выпору из-под фундамента, смещению конструкций. Значительное смещение конструкций губительно для большинства сооружений

Поэтому так важно определить максимально возможную безопасную для грунта нагрузку, которая не нарушит его равновесие

От чего зависит несущая способность грунта

Плотность почвы наряду с грузонесущей способностью определяет деформационную устойчивость грунта. Низкоплотные породы почвы имеют пористую структуру, в которой свободное пространство между фракциями заполнено воздухом либо водой. Если нагрузки на низкоплотный грунт превысят допустимую норму, произойдет уплотнение грунта — усадка, которая чревата разрушением и деформацией находящихся в почве фундаментов.

От плотности почвы зависит степень сжимаемости грунта. На любом участке поверхностный пласт почвы, в большинстве случаев, представлен низкоплотными породами (за исключение регионов с крупнообломочным и скалистым рельефом), а на глубине 5-6 метров располагаются пласты высокоплотного, несжимаемого грунта, способного выдерживать тяжелые габаритные здание.

Именно поэтому на участках с проблемными грунтовыми условиями рекомендуется использовать свайные фундаменты, которые переносят исходящую от дома нагрузку на глубинный, несжимаемый пласт грунта, обладающий

Самостоятельная оценка характеристик земляного слоя

Предварительная оценка состояния почв, подлежащих застройке, может быть выполнена визуально. Уровень воды в колодцах или канавах, состояние стен и фундаментов близлежащих строений, поможет определиться с основными характеристиками земляного слоя.

Исследование почвенных свойств самостоятельно, выполняется садовым буром.

Но, надежный расчет может быть выполнен только на достоверных результатах. Исследование почвенных свойств самостоятельно, выполняется садовым буром.

Необходимо пробить несколько шурфов, в местах значимых для горизонтальной устойчивости здания, на максимально возможную глубину. Обычно, это около 4 метров. Расчет количества шурфов обязательно включает в себя угловые сопряжения и место установки печи.

При невозможности получения помощи профессионалов, в определении опорных качеств почвенного основания под застройкой, можно выполнить эту оценку самостоятельно, пользуясь методиками.

https://youtube.com/watch?v=sh-1pXSqH0krel%3D0%26amp%3Bcontrols%3D0%26amp%3Bshowinfo%3D0

  • www.homeideal.ru
  • silastroy.com
  • podomostroim.ru
  • rfund.ru

От чего зависит несущая способность грунта

Плотность почвы наряду с грузонесущей способностью определяет деформационную устойчивость грунта. Низкоплотные породы почвы имеют пористую структуру, в которой свободное пространство между фракциями заполнено воздухом либо водой. Если нагрузки на низкоплотный грунт превысят допустимую норму, произойдет уплотнение грунта — усадка, которая чревата разрушением и деформацией находящихся в почве фундаментов.

От плотности почвы зависит степень сжимаемости грунта. На любом участке поверхностный пласт почвы, в большинстве случаев, представлен низкоплотными породами (за исключение регионов с крупнообломочным и скалистым рельефом), а на глубине 5-6 метров располагаются пласты высокоплотного, несжимаемого грунта, способного выдерживать тяжелые габаритные здание.

Именно поэтому на участках с проблемными грунтовыми условиями рекомендуется использовать свайные фундаменты, которые переносят исходящую от дома нагрузку на глубинный, несжимаемый пласт грунта, обладающий

Что такое несущая способность грунта?

Несущая способность грунта — это показатель давления, которое может выдерживать грунт. Его указывают либо в Ньютонах на квадратный сантиметр (Н/см²), либо в киолграмм-силе на 1 сантиметр квадратный (кгс/см²), либо в мегапаскалях (МПа).

Данная величина используется при проектировании фундаментов для сравнения нагрузки, которую оказывает на почву конструкция здания с учётом возможного слоя снега на крыше и давления ветра на поверхность стен. Даже при точном подсчете влияния каждого из указанных факторов на соотношение несущей способности поверхности земли на участке к совокупной нагрузке от конструкции здания, эту цифру берут с запасом.

Расчет подошвы фундамента

При проектировании фундамента с опорным основанием обязательным этапом является расчет подошвы фундамента. Основная цель такого расчета состоит в точном определении ширины, глубины и площади основания, при которых оказываемое весом здания удельное давление будет меньше нежели сопротивление грунта подошве фундамента.

Предварительно площадь подошвы фундамента можно установить по условию:

PII ≤ R, в котором

  • РII – это среднее давление под подошвой фундамента в отношении к основному сочетанию нагрузок при вычислениях по деформациям;
  • R – это расчетное сопротивление грунта основания. Показатель вычисляется по формуле СНиП.

На рисунке ниже подробно представлена расчетная схема центрально нагруженной фундаментальной подошвы.

При расчете фундаментов с повышенной жесткостью реактивная эпюра грунта принимается прямоугольной. Уравнение равновесия в этом случае выглядит так:

В данном уравнении есть определенная сложность. Дело в том, что в обеих его частях содержатся искомые геометрические размеры фундамента. Но при выполнении предварительных вычислений вес грунта и самого фундамента в АВСD заменяют на:

где

  • Ɣm – средний показатель удельного веса фундаментальной конструкции и грунтовой породы на ее уступах. Как правило Ɣm составляет 20кН/м³;
  • d – это глубина заложения подошвы фундамента, вычисляется в метрах.

По указанной ниже формуле определяется необходимая площадь фундаментальной подошвы:

При этом расчет ширины подошвы фундамента (b) выполняется:

  • для ленточного фундамента: А = b х 1п.м.:
  • для квадратного столбчатого фундамента: А = b²
  • для прямоугольного столбчатого фундамента:По этой формуле определение размеров подошвы фундамента выполняется исходя из соотношения длины (l) к ширине (b) проектируемого фундамента, поскольку он полностью повторяет конфигурацию конструкции, которая на него опирается. Из этого следует, что
  • для круглого столбчатого фундамента – b = D, где D – это диаметр конструкции

Когда завершено предварительное определение ширины подошвы b = f(Ro) нужно уточнить расчетную сопротивляемость грунтового основания: R = f (b, φ, c, d, γ).

Рассчитав точную сопротивляемость опять нужно вычислить ширину. Повторять действия необходимо до тех пор, пока оба показателя не будут одинаковыми.

Когда с учетом унификации и модульности конструкций размер фундамента подобран, то необходимо проверить фактическое давление на грунт и напряжение под подошвой фундамента.

Чем меньшая разница будет между величинами РII и R, тем экономичнее получится проектное решение.

Данным способом поверяется достоверность расчета по линейной теории деформации грунта. Когда же условие не соблюдается, то для вычислений применять следует нелинейную теорию, а это существенно осложняет расчетные мероприятия.

В зависимости от жесткости и схемы нагружения фундаментов, типа сопряжения их со зданиями возможны пространственные перемещения из-за перераспределения усилий в бетоне и арматуре. Поэтому при выполнении расчетов следует учитывать допустимый отрыв подошвы фундамента, который не окажет негативного воздействия на строительный объект.

Как определить тип грунта самостоятельно

Если после бурения скважина не наполняется водой в течение 5 — 7 дней, можно строить дом без отвода жидкости

На территории России преобладают глины и пески, в болотистых регионах есть торфяные грунты с большим показателем просадки, а в горах строительство ведут на скальных породах. Первоначально бурят скважину во время наибольшей влажности, например, весной или в период дождей. Применяют винтовой бур для максимального сохранения структуры.

Для дома делают стволы по плану конверта — 4 открывают по углам и один ставят в центре. Для сложного строения выбирают точное расположение под несущими элементами и в центре каждого крыла дома. Заглубляют инструмент на 0,6 м ниже горизонта промерзания. По ходу бурения берут пробы из каждого встречающегося пласта.

Определяют влажность земли на глаз. Пробуренную скважину закрывают пленкой и ждут 5 – 7 суток. Если во всех выработках нет воды, уровень почвенной влаги находится ниже – можно строить здание без предварительного отвода жидкости.

Если на дне появляется вода, уровень почвенной жидкости почти рядом, слой относят к водонасыщенным категориям. Пластичность и влажность глинистой породы определяют по вхождению лопаты. Если лезвие легко втыкается и глина прилипает к поверхности, грунт считают влажным и пластичным. Если лопата не пробивает почву, глину относят к сухим видам.

Плотность не является постоянным показателем. Глубокие слои всегда более плотные, чем образцы, полученные извлечением из скважины. При расчете пласты, которые находятся ниже отметки 1,0 м, принимают за плотные слои. Геологические изыскания не всегда имеют место в условиях частного строительства, поэтому несущую способность для упрощенных вычислений принимают на уровне 2 кг/см².

Связность грунта проверяют в шурфе высотой на глубину фундаментной подошвы во время отстаивания выработок для проверки влаги. Срезают наклонно почву и смотрят, когда прекратится осыпание стенок. Угол меньше 45° говорит об устойчивой категории, а больше — о плывучести грунта.

Где можно класть пол на грунт

Класть пол допускается не на каждый грунт:

  • Основание должно быть хорошо уплотнено и выровнено. В противном случае со временем грунт осядет, стяжка пола повиснет в воздухе и со временем начнет разрушаться;
  • Основанием служат грунты, не подверженные пучению;
  • Не стоит укладывать пол на подвижные грунты.

Существует 2 вида пола по грунту:

  • Связанная плита стяжки. Жестко крепится к ленточному фундаменту, опирается на него. Пол не даст усадки, отделка не пострадает при незначительных изменениях грунтов;
  • Несвязанная. Стяжка не будет покрываться трещинами во время усадки, но при последующей эксплуатации отделка может повредиться из-за взаимного движения стен и пола.

При расчете учитывается временное и постоянное давление на всю поверхность пола. В первом случае нагрузка составит 150 кг/м2 (вес людей и мебели), во втором нагрузка зависит от используемых материалов.

ГОСТы, книги, программы

ГОСТы

СП 22.13330.2011 (Актуализированная редакция СНиП 2.02.01-83*) Основания зданий и сооружений СНиП 2.02.01-83 Основания зданий и сооружений ГОСТ 20276-85 ГРУНТЫ – Методы полевого определения характеристик деформируемости ГОСТ 25100-95 Грунты классификация

Книги и пособия

Е.А. Сорочан: Основания, фундаменты и подземные сооружения С.А. Пьянков и З.К. Азизов Учебное пособие – Механика грунтов Учебное пособие – Механика грунтов, основания и фундаменты. Практика

Строительные калькуляторы

  • Калькулятор Бетон-Онлайн v.1.0 – расчет состава бетона.
  • Калькулятор Раствор-Онлайн v.1.0 – расчет состава раствора для кладочных работ.
  • Калькулятор Лента-Онлайн v.1.0 – проектирование ленточного фундамента.
  • Калькулятор ГПГ-Онлайн v.1.0 – расчет нормативной и расчетной глубины промерзания грунта.
  • Калькулятор МЗЛФ-Онлайн v.1.0 – расчет мелкозаглубленного ленточного фундамента (МЗЛФ). 
  • Калькулятор Вес-Дома-онлайн v.1.0 – расчет нагрузок на фундамент.
  • Калькулятор Армирование-Ленты-Онлайн v.1.0 – расчет армирования ленточного фундамента.

Количество арматуры для столбчатого основания

Столбчатый фундамент принято армировать прутом диаметром 10 мм. Главную несущую роль выполняет вертикальная арматура, которая должна иметь ребристую поверхность. Горизонтальные прутья используются для создания единого каркаса, поэтому могут быть гладкими, а их диаметр может составлять всего 6 мм.

На один столбик диаметром 20 см и высотой 2 м понадобится:

  • рифленой арматуры диаметром 10 мм: 4 * 2,3 м (с учетом ростверка) = 9,2 м;
  • гладкой арматуры диаметром 6 мм: 3,14 * 0,2 м (длина окружности столбика) * 4 (количество горизонтальных прутьев) = 2,512 м;
  • вязальной проволоки: 16 (количество соединений) * 0,4 м = 6,4 м.

Таблица средних значений

Средняя несущая способность грунтов — это основной показатель расчетов. После выемки образцов породы из скважин проводится определение их вида для дальнейшей работы.

Классификация грунтов приведена в таблицах СНИП 1–3 ГОСТ 25100.2011. После определения типа грунта в каждом из залегающих слоев необходимо определить предельное сопротивление грунта сжатию.

Подробная информация содержится в ГОСТ 25100.2011 «Грунты. Классификация», таблица Б.1.

Рис. 2 Сопротивление сжатию

Основа расчета — расчетное сопротивление осевому сжатию. С подробным методом расчета с учетом всех нюансов можно ознакомиться в СП 22.13330.2016 «Основания зданий и сооружений». Здесь же можно найти значение всех коэффициентов, необходимых для максимально точного расчета.

Вычисление несущей способности свайно-винтового фундамента

Несмотря на то что свайно-винтовые фундаменты достаточно надежны, а их конструкционные особенности можно рассчитать используя специальный калькулятор, определение удерживающих характеристик фундамента непременно выполняется. Опорные свойства винтовой сваи напрямую зависят от типа грунта.

Таблица: Определение несущих характеристик винтовой сваи

ПочваСтруктураРасчетное сопротивление грунта (кг/см²)Опорная способность винтовой сваи (т), при глубине залегания лопасти (см)150200250300ГлинаПолутвердая64,65,56,156,6Тугая54,154,85,76,4Мягкая43,654,455,055,85Супеси и суглинкиПолутвердая5,54,355,155,856,55Тугая4,53,84,75,46,05Мягкая3,53,44,254,75,4ЛёссМягкая12,252,83,654,4ПесокСредняя159,059,610,511,0Мелкая85,656,357,057,75Пылеватая54,14,955,656,2

Расчет любого фундаментного основания проводится по единой методике, здесь может применяться специальный калькулятор.

Свайно-винтовой фундамент

Последовательность расчета:

  • определение коэффициента сопротивления почвы;вычисление массы постройки;определение давления, оказываемого весом здания на опору;сравнение удерживающих характеристик основания и давления, оказываемого постройкой;корректировка конструкции фундаментного основания или параметров сваи.

Верный подбор и расчет винтовой сваи позволит домохозяину сэкономить на ремонтных работах базового уровня дома. Конструктивно сваи отличаются по виду почвы, где устанавливается опора:

  • для вечной мерзлоты;для пучинистых и обводненных почв.

Заключение

Расчёт ленточного фундамента выполняется согласно действующим строительным нормам и правилам, в первую очередь СП 22.13330.2011. Точный расчёт фундамента по несущей способности и его осадки невозможен без отчета об инженерно-геологических изысканиях.

Приближенным образом требуемая ширина ленточного фундамента может быть определена на основании усредненных показателей несущей способности тех или иных видов грунтов, приведенных в СП 22.13330.2011. Расчёт осадки обычно не показателен для простых, однородных геологических условий в рамках «частного» строительства (легких строений малой этажности).

Принятие решения о самостоятельном, приближенном, неквалифицированном расчёте ширины подошвы ленточного фундамента владельцем будущего строения неоспоримым образом возлагает всю возможную ответственность на него же.

Целесообразность применения он-лайн калькуляторов вызывает обоснованные сомнения. Правильный результат можно получить, используя методики расчёта, приведенные в нормах и справочной литературе. Готовые калькуляторы лучше применять для подсчета требуемого количества материалов, а не для определения ширины подошвы фундамента.

Точный расчет ленточного фундамент не так уж прост и требует наличия данных по грунтам, на которые он опирается, в виде отчета по инженерно-геологическим изысканиям. Заказ и оплата изысканий, а также кропотливый расчет окупятся сторицей правильно рассчитанным фундаментом, на который не будут потрачены лишние деньги, но который выдержит соответствующие нагрузки и не приведет к развитию недопустимых деформаций здания.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий