Самодельный регулятор напряжения на тиристоре — схема для изготовления

Разновидности регуляторов мощности

Для разных целей используются различные регуляторы мощности.

Тиристорный прибор управления

Конструкция устройства довольно простая. Обычно тиристоры применяются в маломощных приборах. Тиристорный терморегулятор состоит из биполярных транзисторов, самого тиристора, конденсатора и нескольких резисторов.

Тиристорный транзисторный регулятор

Транзисторы образуют импульсный сигнал, когда конденсаторное напряжение уравнивается с рабочим, они открываются. Электросигнал передается на вывод тиристора, после чего происходит разрядка конденсатора и запирание ключа. Вся последовательность действий повторяется циклически.

Обратите внимание! Величина задержки обратно пропорциональна мощности, которая поступает в нагрузку

Симисторный преобразователь мощности

Симистор — подвид тиристора, в котором несколько больше переходов p-n, из-за чего его принцип работы несколько иной. Но часто симистор считают отдельным видом стабилизатора мощности. Конструкция представляет собой 2 тиристора, подключенных параллельно и имеющих общее управление.

К сведению! Отсюда и происходит название «симистор» — «симметричные тиристоры». Иногда он еще называется ТРИАК (TRIAC).

Схема 2 параллельно подключенных тиристоров (слева) и симистора (справа)

На схеме видно, что у симистора вместо анода и катода указаны обозначения Т1 и Т2. Все потому, что понятия «катод» и «анод» в данном случае не имеют смысла, так как электроток может выходить через оба вывода.

Симисторные универсальные регуляторы имеют ряд плюсов, в их числе небольшая цена, долгий срок службы и отсутствие подвижных контактов, которые могут быть источниками помех. Но есть и недостатки: подверженность помехам и шумам, отсутствие поддержки высоких частот переключения.

Важно! Их не применяют в мощных промышленных установках, вместо этого там используют тиристоры или IGBT транзисторы

Фазовый способ трансформации

Фазовая трансформация происходит в так называемых диммерах. Используются такие приборы, к примеру, для изменения интенсивности освещения галогенных ламп или лампочек накаливания. Электросхема обычно воплощается на специальных микроконтроллерах, в которых используется своя интегрированная электросхема снижения напряжения. Благодаря своей конструкции диммеры могут плавно снижать мощность.

Светодиодный диммер

Из минусов таких устройств высокая чувствительность к помехам, высокий коэффициент пульсаций и маленький коэффициент мощности сигнала на выходе. Чтобы стабилизировать диммер, используются сдвоенные тиристоры.

Схема самодельного РН 220 В с тиристорами

Тиристорные сборки также эффективные, одновременно они не отличаются особой сложностью. Силовым ключом тут выступает тиристор. Главное отличие от самоделок на симисторах — каждая полуволна имеет свой индивидуальный ключ, снабженный динистором для управления.

Для схемы взяли отечественные детали. При установке тиристора VS1, диодов VD1–VD4 на радиаторы (охладители), то устройство сможет работать с нагрузкой в 10 А: при 220 В можно будет обслуживать 2.3 кВт.

В сборке лишь 2 силовых элемента: диодный мост, тиристор. Детали рассчитаны на 400 В, ток 10 А. мост трансформирует переменное напряжение в однополярное пульсирующее, фазовую настройку полупериодов обеспечивает тиристор.

R1 и 2, стабилитрон VD5 — это параметрический стабилизатор, ограничивающий напряжение, подаваемое в узел управления на отметке 15 В. Последовательное размещение резисторов требуется для повышения пробивного напряжения и рассеиваемой мощности.

C1 без заряда, в месте соединения R6 и 7 тоже нулевое напряжение, но постепенно оно там растет. Чем ниже сопротивление на резисторе R4, тем быстрее через эммитер VT1 перегонится напряжение на его базе, транзистор откроется. VT1 и 2 (транзисторы) — это состав маломощного тиристора. При достижении значения на переходе база/эмиттер VT1 пороговой отметки транзистор открывается и отпирает VT2, а тот в свою очередь — тиристор.

Второй вариант

Описанным ниже регулятором настраивают скорость вращения электродвигателей, нагрев паяльника и подобное. Такой прибор отчасти верно назвать регулятором мощности, но правильно будет также именовать его и РН, так как, по сути происходит регулировка фазы — времени, за которое сетевая полуволна попадает в нагрузку

С одной стороны настраивается напряжение через скважность импульса, с иной — мощность появляющаяся на нагрузке

Наиболее результативный прибор для резистивной нагрузки — лампочек, нагревателей. С индуктивной будет справляться, но не так эффективно, при слишком малой величине точность диапазона настройки снизится. Существуют две почти идентичные схемы по описываемому варианту:

Схема регулятора состоит из доступных деталей, ее можно полностью собрать из таковых даже советского периода. При включении (как на изображении) выпрямительных диодов прибор выдержит до 5 А, что соответствует 800 Вт…1  кВт. Но надо поставить радиаторы для охлаждения.

Основа изделия:

  • тирист. КУ202Н;
  • Т1–Т2 (КТ315 и КТ361) — это аналог 1-переходного транзистора.

Алгоритм:

  1. Когда напряжение на конд. С1 (470 nF) сравнивается таковому в точке соединения резист. R3 и 4 (10 кОм и 2.2 кОм), тогда транзисторы открываются.
  2. От них подается импульс управляющему электроду тиристора.
  3. При этом C1 тратит свой заряд, тиристор открывается до следующего полупериода.

Мощность можно повысить, если заменить диоды, рассчитанные на больший необходимый ток. Также можно вместо тиристора КУ202 с пределом в 10 А поставить помощнее: Т122, Т132, Т142.

Деталей не много, допустим навесной монтаж, но с платой сборка будет красивее и комфортнее. Стабилитрон Д814В можно поменять на любой с 12–15 В. Из коробочки выведен разъем для вилки.

Модификация, особенности, демонстрация работы

Схема также может поместиться в корпусе наружной розетки, в маленькой пластиковой распаячной коробке. Мощность самоделки ограничена диодным мостом (1000 В, 4 А), тиристором. Напомним, в нашем примере предел чуть больше 800 Вт, максимум — 1000 Вт. Для бытовых условий этого более чем достаточно.

Радиаторы на тиристоры и диоды крайне рекомендованы — в данном случае они не просто желательные, а жизненно необходимые, так как перегрев может быть значительным. Минимальная мощность резистора R1 — 2 Вт

Демонстрация:

Нюансы в конструкции


Регулятор напряжения на тиристоре Тиристор – это управляемый полупроводник. При необходимости он может очень быстро провести ток в нужном направлении. От привычных диодов устройство отличается тем, что имеет возможность контролировать момент подачи напряжения.

Регулятор состоит из трех компонентов:

  • катод – проводник, подключаемый к отрицательному полюсу источника питания;
  • анод – элемент, присоединяемый к положительному полюсу;
  • управляемый электрод (модулятор), который полностью охватывает катод.

Регулятор функционирует при соблюдении нескольких условий:

  • тиристор должен попадать в схему под общее напряжение;
  • модулятор должен получать кратковременный импульс, позволяющий устройству контролировать мощность электроприбора. В отличие от транзистора регулятору не требуется удержание этого сигнала.

Тиристор обладает двумя устойчивыми положениями («открыто» или «закрыто»), которые переключаются при помощи напряжения. При появлении нагрузки он включается, при пропадании электрического тока выключается. Собирать подобные регуляторы учат начинающих радиолюбителей. Заводские паяльники, имеющие регулировку температуры жала, стоят дорого. Гораздо дешевле купить простой паяльник и самому собрать для него регистр напряжения. Существует несколько схем монтажа устройства. Самый несложный – это навесной тип. При его сборке не используют печатную плату. Не потребуется также специальные навыки при монтаже. Сам процесс занимает мало времени. Поняв принцип работы регистра, будет просто разобраться в схемах и рассчитать оптимальную мощность для идеальной работы оборудования, где тиристор установлен.

Простейшая тиристорная схема регулятора

Вот еще одна самая простая схема тиристорного регулятора мощности, упрощенный вариант классического регулятора. Количество деталей сведено к минимуму. Вместо четырех диодов VD1-VD4 используется один VD1. Принцип работы ее такой же, как и классической схемы. Отличаются схемы только тем, что регулировка в данной схеме регулятора температуры происходит только по положительному периоду сети, а отрицательный период проходи через VD1 без изменений, поэтому мощность можно регулировать только в диапазоне от 50 до 100%. Для регулировки температуры нагрева жала паяльника большего и не требуется. Если диод VD1 исключить, то диапазон регулировки мощности станет от 0 до 50%.

Если в разрыв цепи от R1 и R2 добавить динистор, например КН102А, то электролитический конденсатор С1 можно будет заменить на обыкновенный емкостью 0,1 mF. Тиристоры для выше приведенных схем подойдут, КУ103В, КУ201К (Л), КУ202К (Л, М, Н), рассчитанные на прямое напряжение более 300 В. Диоды тоже практически любые, рассчитанные на обратное напряжение не менее 300 В.

Приведенные выше схемы тиристорных регуляторов мощности с успехом можно применять для регулирования яркости свечения светильников, в которых установлены лампочки накаливания. Регулировать яркость свечения светильников, в которых установлены энергосберегающие или светодиодные лампочками, не получится, так как в таких лампочках вмонтированы электронные схемы, и регулятор просто будет нарушать их нормальную работу. Лампочки будут светить на полную мощность или мигать и это может даже привести к преждевременному выходу их из строя.

Схемы можно применять для регулировки при питающем напряжении в сети переменного тока 36 В или 24 В. Нужно только на порядок уменьшить номиналы резисторов и применить тиристор, соответствующий нагрузке. Так паяльник мощностью 40 Вт при напряжении 36 В будет потреблять ток 1,1 А.

Регулятор мощности паяльника своими руками: проверенные рабочие схемы (6 шт)

Не всем нравится покупать неизвестно что. А некоторым приятнее сделать регулятор мощности паяльника своими руками, ведь это тоже опыт. Большинство схем собирается на симисторах и тиристорах, сейчас их найти проще чем транзисторы. Работать с ними тоже проще, так как они либо открыты, либо закрыты, что позволяет делать схемы проще.

Корпус подберите любой

Простые схемы на тиристоре

При выборе схемы регулятора мощности для паяльника важны две вещи: мощность и доступность деталей. Представленный ниже регулятор мощности паяльника собран на широко распространённых деталях, которые найти не проблема. Максимальный ток — 10 А, что более чем достаточно для выполнения работ любого рода и для паяльников мощностью до 100 Вт. Тиристор в данной схеме использован КУ202н

Обратите внимание на подключение моста. Есть много схем с ошибкой в подключении. Этот вариант рабочий

Проверен не раз

Этот вариант рабочий. Проверен не раз.

Схема регулятора температуры для паяльника на тиристоре

При сборке схемы тиристор обязательно ставим на радиатор, чем он больше тем лучше. Схема проста, но когда она включена, создаёт помехи. Радио рядом не послушаешь и, чтобы убрать помехи, параллельно нагрузке подключаем конденсатор на 200 пФ, а последовательно дроссель. Параметры дросселя подбираются в зависимости от регулируемой нагрузки, но так как паяльники обычно не более чем на 80-100 Вт, то и дроссель можно сделать на 100 Вт. Для этого понадобится ферритовое кольцо наружным диаметром 20 мм, на которое намотано около 100 витков проводом сечением 0,4 мм².

Ещё один недостаток переведённой выше схемы — паяльник ощутимо «зудит». Иногда с этим мириться можно, иногда нет. Для устранения этого явления можно подобрав параметры конденсатора C1 так чтобы при выставленном на максимум переменном резисторе, подключённая лампа еле-еле светилась.

На других элементах но тоже без помех

Приведенный выше регулятор можно использовать для любой нагрузки. Приведем еще один аналог,но с использованием другой элементной базы. Регулировать можно не только мощность/температуру паяльника, но и любую другую нагрузку с небольшой индуктивной составляющей.

Видоизмененная схема для регулирования мощности паяльника и любой другой нагрузки с устраненным эффектом пульсации

Пульсация тут есть, но ее частота высока и она не будет восприниматься нашим зрением. Так что можно использовать не только как диммер для паяльника, но и для регулирования света от обычной лампы накаливания. Нужен ли диодный мост для регулировки мощности нагрева паяльника? Он не помешает, но необходимости в нем нет.

На тиристоре с высокой чувствительностью

Данная схема позволяет плавно изменять температуру паяльника от 50% до 100%. Есть два индикатора — питания и мощности. Светодиод наличия питания горит всегда во включенном состоянии, но при 75% мощности свечение более яркое. Индикатор мощности меняет интенсивность свечения в зависимости от режима работы.

Регулятор мощности для паяльника без помех

Чтобы регулятор поместился в корпус от зарядного устройства мобильного телефона, сопротивления используют СМД типа (1206). Все резисторы установлены на плате, кроме R 10. Некоторые могут быть составными (из последовательно соединенных резисторов собираем нужный номинал).

Для нормальной работы схемы требуется чувствительный тиристор (с малым током управления) и низким током удержания состояния (порядка 1 мА). Например, КТ503 (рассчитан на напряжение 400 В, Ток управления 1 мА). Остальная элементная база указана на схеме.

Если собрали, но напряжение не регулируется

Если собранный регулятор ничего не регулирует — не меняется температура паяльника — дело в тиристоре. Схема, вроде, работает, а ничего не происходит. Причина — тиристор с низкой чувствительностью. Токи, которые протекают в схеме, недостаточны для открытия. В таком случае стоит поставить аналог с более высокой чувствительностью (токи управления более низкие).

Один из вариантов корпуса, в который можно спрятать самодельный регулятор мощности для паяльника

Еще может регулятор работать, но паяльник начинает «зудеть». Решается такая проблема установкой дросселя на выходе (перед паяльником). Емкость надо подбирать — зависит от паяльника.  Второй вариант решения — аналоговая схема управления, а это уже другая схема.

Ну, и при проблемах с работой ищите либо неисправные детали, либо неправильно подобранные компоненты. Обычно проблема в этом.

Практические примеры для повторения

Наибольшей популярностью среди радиолюбителей пользуются схемы, предназначенные для управления яркостью светильника и изменения мощности паяльника. Такие схемы просты для повторения и могут собираться без использования печатных плат простым навесным монтажом.

Схемы, выполненные самостоятельно, ничем не уступают по работоспособности заводским, так как не требуют настроек и при исправных радиодеталях сразу готовы к использованию. В случае отсутствия возможности или желания изготовить прибор своими руками с «нуля», можно приобрести наборы для самостоятельного изготовления. Такие комплекты содержат все необходимые радиоэлементы, печатную плату и схему с инструкцией по сборке.

Доминирующая схема

Такой прибор проще всего собрать на тиристоре. Работа схемы основана на способности открывания тиристора при прохождении входной синусоиды через ноль, в результате чего сигнал обрезается, и величина напряжения на нагрузке изменяется.

Схема для повторения тиристорного регулятора мощности построена на использовании тиристора VS1, в качестве которого используется КУ202Н. Это радиоэлемент изготавливается из кремния и имеет структуру p-n-p типа. Применяется в качестве симметричного переключателя сигналов средней мощности и коммутации силовых цепей на переменном токе.

При подаче напряжения 220в входной сигнал выпрямляется и поступает на конденсатор C1. Как только значение падения напряжения на C1 сравняется с величиной разности потенциалов, в точке между сопротивлениями R3 и R4 биполярные транзисторы VT1 и VT2 открываются. Уровень напряжения ограничивается стабилитроном VD1. Сигнал поступает на управляющий вывод КУ202Н, а конденсатор C1 разряжается. При возникновении сигнала на управляющем выводе тиристор отпирается. Как только конденсатор разрядится, VT1 и VT2 закрываются, соответственно запирается и тиристор. При следующем полупериоде входного сигнала всё повторяется вновь.

Такой регулятор возможно использовать не только как диммер, но и для управления мощностью коллекторного двигателя. Доминирующая схема может работать при токах до 10 ампер, эта величина напрямую зависит от характеристик используемого тиристора, при этом он обязательно устанавливается на радиатор.

Контроллер нагрева паяльника

Управление мощностью паяльника не только положительно сказывается на сроке его службы, предотвращая жало и внутренние его элементы от перегревания, но и позволяет выпаивать радиоэлементы, критичные к температуре устройства.

Читать также: Двутавровая балка для чего нужна

Приборы для контроля температуры паяльника выпускаются давно. Одним из его видов был отечественный прибор, выпускающийся под названием «Добавочное устройство для электропаяльника типа П223». Он позволял подключать низковольтный паяльник к сети 220В.

Проще всего выполняется регулятор для паяльника с применением симистора КУ208Г.

Силовые контакты подключаются последовательно к нагрузке. Поэтому ток, протекающий через симистор, совпадает с током нагрузки. Для управления ключевым режимом применяется динистор VS2. Конденсатор C1 заряжается через резисторы: R1 и R2. Индикация работы организовывается под средством VD1 и светодиода LED. Из-за того, что для изменения напряжения на конденсаторе требуется время, образуется сдвиг фаз между сетевым и конденсаторным напряжением. Изменяя величину сопротивления R2, регулируется величина фазового сдвига. Чем дольше конденсатор заряжается, тем меньше находится в открытом состоянии симистор, а значит и значение мощности ниже.

Такой регулятор рассчитан на подключение нагрузки с мощностью до 300 ватт. При использовании паяльника с мощностью более 100 ватт симистор следует устанавливать на радиатор. Изготовленная плата с лёгкостью помещается на текстолите размером 25х30 мм и свободно размещается во внутренней сетевой розетке.

В электрических схемах для изменения уровня выходного сигнала используется регулятор напряжения. Основное его назначение — изменять подаваемую на нагрузку мощность. C помощью устройства управляют оборотами электродвигателей, уровнем освещённости, громкостью звука, нагревом приборов. В радиомагазинах можно приобрести готовое изделие, но несложно изготовить регулятор напряжения своими руками.

Как работает такое устройство?

Описанные ниже характеристики будет соответствовать большинству схем.

  1. Тиристорный регулятор общей мощности, принцип и особенности работы которого будут основаны на фазовости управления величиной напряжения, изменяет и общую мощность в приборах. Данная особенности заключена в том, что в нормальных производственных условиях на нагрузку могут воздействовать примерные показатели напряжения бытовой сети, которая будет меняться в соответствии с синусоидальным законом. Выше, при описании принципа функционирования работы тиристора было сказано о том, что любой тиристор включает в себя функционирование лишь в одном направлении, то есть осуществляет управление своей полуволной от синусоидов. Что же это может означать?
  2. Если при помощи такого прибора, как тиристор со временем подключать нагрузку в строго определённое время, то показатель действующего напряжения будет довольно низким, так как половина от напряжения (действующее значение, которое и воспроизводит нагрузку) будет намного меньше, чем световое. Такое явление можно рассмотреть на графиках движения.

При этом происходит определённая область, которая будет находиться под особым напряжением. Когда воздействие положительной полуволны окончится и начнётся новый период движения с отрицательно полуволной, то один из таких тиристоров начнёт закрываться, и в это же время откроется новый тиристор.

Вместо слов положительная и отрицательная волна стоит использовать первая и вторая (полуволна).

В то время как на схему начинает своё воздействие первая полуволна, происходит особая зарядка ёмкости С1, а также С2. Скорость их полной зарядки будет ограничена потенциометром R 5. Такой элемент будет полностью переменным, и при его помощи будет задаваться выходное напряжение. В тот момент, когда на поверхности конденсатора С1 появится нужное для открытия диристора VS 3 напряжения, весь динистор откроется, а через него начнёт проходить ток, при помощи которого откроется тиристор VS 1.

Во время пробоя динистра и образуется точка на общем графике. После того как значение напряжение перейдёт нулевую отметку, и схема будет находиться под воздействием второй полуволны, тиристор VS 1, закроется, а процесс будет повторяться, только уже для второго динистра, тиристора, а также конденсатора. Резисторы R 3 и R 3 нужны для ограничения общего тока управления, а R 1 и R 2 — для процесса термостабилизации всей схемы.

Принцип действия второй схемы будет точно такой же, но в ней будет происходить управление лишь одной из полуволн переменного тока. После того, как пользователь будет понимать принцип работы устройства и его общую схему строение, он сможет понять как собрать или же в случае необходимости починить тиристорный регулятор мощности самостоятельно.

Схемы на тиристорах

Регулировать общую мощность паяльника можно довольно просто, если использовать для этого аналоговые или же цифровые паяльные станции. Последние довольно дорогие совершать использование, и собрать их, не имея особого опыта, довольно сложно. В то время как аналоговые приборы (считаются по своей сути регуляторами общей мощности) не составит труда создать самостоятельно.

Довольно простая схема прибора, которая поможет регулировать показатель мощности на паяльнике.

  1. VD — КД209 (либо близкие по его общим характеристикам).
  2. R 1 — сопротивление с особым номиналом в 15 кОм.
  3. R 2 — это резистор, который обладает особым показателем переменного тока около 30 кОм.
  4. Rn — это общая нагрузка (в этом случае вместо неё будет использован особый маятник).

Такое устройство для регуляции может контролировать не только положительный полупериод, по этой причине мощность паяльника будет в несколько раз меньше номинальной. Управляется такой тиристор с помощью специальной цепи, которая несёт в себе два сопротивления, а также ёмкость. Время зарядки конденсата (оно будет регулироваться особым сопротивлением R2) влияет на длительность открытия такого тиристора.

В статье рассказывается о том, как работает тиристорный регулятор мощности, схема которого будет представлена ниже

В повседневной жизни очень часто возникает необходимость регулирования мощности бытовых приборов, например электроплиты, паяльника, кипятильников и ТЭНов, на транспорте – оборотов двигателя и т.д. На помощь приходит простейшая радиолюбительская конструкция – регулятор мощности на тиристоре. Собрать такое устройство не составит труда, оно может стать тем самым первым самодельным прибором, который будет выполнять функцию регулировки температуры жала паяльника начинающего радиолюбителя. Стоит отметить, что готовые паяльные станции с контролем температуры и прочими приятными функциями стоят на порядок дороже простого паяльника. Минимальный набор деталей позволяет собрать простой тиристорный регулятор мощности навесным монтажом.

К сведению, навесной монтаж — это способ сборки радиоэлектронных компонентов без применения печатной платы, а при хорошем навыке он позволяет быстро собрать электронные устройства средней сложности.

Вы также можете заказать электронный конструктор тиристорного регулятора, а для тех, кто хочет разобраться во всём самостоятельно, ниже будет представлена схема и объяснён принцип работы.

Замена симистора (Triac-а) в диммере

Пустотелые заклёпки можно удалить с помощью сверла, заточенного под углом 90°, или с помощью кусачек-бокорезов. Но, чтобы не повредить радиатор, делать это нужно непременно со стороны расположения триака.

Радиаторы, изготовленные из очень мягкого алюминия, при клёпке были немного деформированы. Поэтому, пришлось ошкурить контактные поверхности наждачной бумагой.

  1. Винт М2,5х8.
  2. Шайба пружинная (гровер) М2,5.
  3. Шайба М2,5 – стеклотекстолит.
  4. Корпус симистора.
  5. Прокладка – фторопласт 0,1мм.
  6. Гайка М2,5.
  7. Шайба М2,5.
  8. Трубка (кембрик) Ø2,5х1,5мм.
  9. Шайба М2,5.
  10. Радиатор.

Так как я использовал триак, не имеющий гальванической развязки между электродами и контактной площадкой, то применил старый проверенный способ изоляции. На чертеже видно, как он реализуется.

А это те же детали гальванической развязки триака в натуральном виде.

Для предотвращения продавливания стенки радиатора в месте крепления симистора, под головку винта была подложена шайба. А у самого винта была сточена большая часть шляпки, чтобы последняя не цеплялась за ручку потенциометра, регулятора мощности.

Вот так выглядит симистор, изолированный от радиатора. Для улучшения теплоотвода, использовалась термопроводящая паста КПТ-8.

Что находится под кожухом диммера.

Снова в строю.

Как совершает свою работу тиристор?

Тиристор — это управляемый полупроводниковый прибор, который способен быстро провести ток в одну сторону. Слово управляемый обозначает тиристор не просто так, так как с его помощью, в отличие от диода, который также проводит общий ток лишь к одному полюсу, можно выбирать отдельный момент, когда тиристор начнёт процесс проведения тока.

Тиристор обладает сразу тремя выводами тока:

  1. Катод.
  2. Анод.
  3. Управляемый электрод.

Чтобы осуществить течение тока через такой тиристор, стоит выполнить следующие условия: деталь обязана в обязательном порядке расположена на самой цепи, которая будет находиться под общим напряжением, на управляющую часть электрода должен быть подан нужный кратковременный импульс. В отличие от транзистора, управление таким тиристор не будет требовать от пользователя удержания управляющего сигнала.

Но в этом все трудности использования такого прибора заканчиваться не будут: тиристор можно легко закрыть, если прервать поступление в него тока по цепи, либо создав обратное напряжение анод — катод. Это будет значить то, что применение тиристора в цепях постоянного тока считается довольно специфичным и в большинстве случаев полностью неблагоразумно, а в цепях переменного, к примеру, в таком устройстве как тиристорный регулятор, схема создана таким методом, чтобы было полностью обеспечено условие для закрытия прибора. Любая данная полуволна будет полностью закрывать соответствующий отдел тиристора.

Вам, скорее всего, сложно понять схему его строения. Но, не нужно расстраиваться — ниже будет более подробно описан процесс функционирования такого устройства.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий