Назначение, устройство и принцип действия трансформаторов тока

Принцип работы трансформаторов тока

1.3 Принцип работы Трансформатор тока состоит из замкнутого сердечника, набранного из тонких листов электротехнической стали, и двух обмоток — первичной и вторичной. Первичную обмотку включают последовательно в контролируемую цепь, ко вторичной обмотке присоединяют токовые катушки различных приборов и реле. Рисунок 1 – Трансформатор тока: а — устройство, б, в — схемы включения амперметра непосредственно в контролирующую цепь и через трансформатор тока Устройство трансформатора тока и схемы включения амперметра показаны на рисунке 1, а—в. Магнитный поток в магнитопроводе 3 создается токами первичной 1 и вторичной 2 обмоток. Соотношение первичного I1 и вторичного I2 токов определяется формулой: KТТ = I1/I2 = w2/wl , где KТТ — коэффициент трансформации; w1 и w2 — число витков первичной и вторичной обмоток. Если в силовых трансформаторах и трансформаторах напряжения увеличение сопротивления во вторичной цепи вызывает уменьшение тока во вторичной и в первичной цепях, а напряжение на выводах обеих обмоток почти не изменяется, то у трансформаторов тока увеличение сопротивления во вторичной цепи приводит к повышению напряжения на выводах вторичной обмотки. Это объясняется тем, что ток в первичной цепи не зависит от нагрузки трансформатора тока. Ток во вторичной цепи трансформатора тока практически не меняется с изменением ее сопротивления при данном режиме первичной цепи. Вследствие этого нагрузка трансформатора тока увеличивается с возрастанием сопротивления во вторичной цепи, складывающегося из сопротивлений, подключенных к трансформатору тока аппаратов и приборов, соединительных проводов и переходных контактов. Трансформаторы тока для электроустановок напряжением до 1000 В показаны на рисунке 2, а, б, в (катушечный, шинный ТШ-0,5 и шинный с литой изоляцией ТШЛ-0,5). В шинных трансформаторах тока в качестве первичной обмотки используют шину, пропускаемую через окно 5 сердечника трансформатора тока, на который намотана вторичная обмотка. Проходные трансформаторы тока для внутренней установки на напряжение 10 кВ выполняют многовитковыми, одновитковыми и шинными с фарфоровой и пластмассовой (литой) изоляцией (Рисунок 3, а—в). Опорный трансформатор тока ТФНД-220 для наружной установки на напряжение 220 кВ (Рисунок 4) имеет обмотки, помещенные в фарфоровый корпус 3, залитый маслом и укрепленный на основании 4. На верхнем торце фарфорового корпуса укреплен чугунный расширитель 1 для масла с маслоуказателем и зажимами 2 первичной обмотки. Сердечник с вторичной обмоткой охватывается первичной обмоткой, имеющей в этом месте форму кольца. Выводы вторичной обмотки размещены в коробке 5 на основании трансформатора. Рисунок 2 – Трансформаторы тока на напряжение до 1000 В: а — катушечный, б, в — шинные ТШ-0,5 и ТШЛ-0,5; 1 — каркас, 2, 4 — зажимы вторичной и первичной обмоток, 3 — защитный кожух, 5 — окно

Рисунок 3 – Трансформаторы тока на напряжение 10 кВ с литой изоляцией: а — многовитковый ТПЛ-10, б — одновитковый ТПОЛ-10, в —шинный ТПШЛ-10; 1, 2 — зажимы первичной и вторичной обмоток, 3 — литая изоляция, 4 — установочный угольник, 5 — сердечник

Рисунок 4 – Опорный трансформатор тока ТФНД-220 наружной установки В высоковольтных распределительных устройствах подстанций применяют проходные (Рисунок 5, а) и опорные (Рисунок 5, б) трансформаторы тока. Рисунок 5 – Трансформаторы тока: а — проходной ТПФМ-10 на 10 кВ, б — опорный ТФН-35М на 35 кВ; 1 и 3 — первичная и вторичная обмотки, 2 — фарфоровый изолятор, 4 — сердечник вторичной обмотки, 5 — контактный угольник, 6 — крышка, 7 — кожух, 8 — верхний фланец, 9 — зажимы выводов вторичной обмотки, 10 — якореобразный болт, 11 — крышка, 12 — фарфоровая покрышка, 13 — изоляционное масло, 14 — кольцевые обмотки («восьмеркой»), 15 — полухомут, 16 — масловыпускатель, 17 — цоколь, 18 — коробка вторичных выводов, 19 — кабельная муфта, 20 — маслоуказатель

Конструкция и принцип действия

Внешний вид типичного трансформатора тока представлен на рисунке 1. Характерным признаком этих моделей является наличие у них диэлектрического корпуса. Формы корпусов могут быть разными – от прямоугольных до цилиндрических. В некоторых конструкциях отсутствуют проходные шины в центре корпуса. Вместо них проделано отверстие для обхвата провода, который выполняет функции первичной обмотки.


Рис. 1. Трансформатор тока

Материалы диэлектриков выбирают в зависимости от величины напряжений, для которых предназначено устройство и от условий его эксплуатации. Для обслуживания промышленных энергетических систем изготавливают мощные ТТ с керамическими корпусами цилиндрической формы (см. рис. 2).


Рис. 2. Промышленный керамический трансформатор тока

Особенностью трансформатора является обязательное наличие нагрузочного элемента (сопротивления) во вторичной обмотке (см. рис. 3). Резистор необходим для того, чтобы не допускать работы в режиме без вторичных нагрузок. Функционирование трансформатор тока с ненагруженными вторичными обмотками недопустимо из-за сильного нагревания (вплоть до разрушения) магнитопровода.


Рис. 3. Принципиальная схема трансформатора тока

В отличие от трансформаторов напряжения, ТТ оснащены только одним витком первичной обмотки (см. рис. 4). Этим витком часто является шина, проходящая сквозь кольцо сердечника с намотанными на него вторичными обмотками (см. рис. 5).


Рис. 4. Схематическое изображение ТТ


Рис. 5. Устройство ТТ

Иногда в роли первичной обмотки выступает проводник электрической цепи. Для этого конструкция сердечника позволяет применить шарнирное соединение частей трансформатора для обхвата провода (см. рис. 6).


Рис. 6. ТТ с разъемным корпусом

Сердечники трансформаторов выполняются способом шихтования кремнистой стали. В моделях высокого класса точности сердечники изготовляют из материалов на основе нанокристаллических сплавов.

Принцип действия.

Основная задача токовых трансформаторов понизить (повысить) значение тока до приемлемой величины. Принцип действия основан на свойствах трансформации переменного электрического тока. Возникающий переменный магнитный поток улавливается магнитопроводом, перпендикулярным направлению первичного тока. Этот поток создается переменным током первичной катушки и наводит ЭДС во вторичной обмотке. После подключения нагрузки начинает протекать электрический ток по вторичной цепи.

Зависимости между обмотками и токами выражены формулой: k = W2 / W1 = I1 / I2 .

Поскольку ток во вторичной катушке обратно пропорционален количеству витков в ней, то путем увеличения (уменьшения) коэффициента трансформации, зависящего от соотношения числа витков в обмотках, можно добиться нужного значения выходного тока.

На практике, чаще всего, эту величину устанавливают подбором количества витков во вторичной обмотке, делая первичную обмотку одновитковой.

Линейная зависимость выходного тока (при номинальной мощности) позволяет определять параметры величин в первичной цепи. Численно эта величина во вторичной катушке равна произведению реального значения тока на номинальный коэффициент трансформации.

В идеале I1 = kI2 = I2W2/W1. С учетом того, что W1 = 1 (один виток) I1 = I2W2 = kI2. Эти несложные вычисления можно заложить в программу электронного измерителя.


Рис. 7. Принцип действия трансформатора тока

На рисунке 7 не показан нагрузочный резистор. При измерениях необходимо учитывать и его влияние. Все допустимые погрешности в измерениях отображает класс точности ТТ.

Назначение и принцип действия трансформатора

Назначение и принцип действия трансформатора — это передача электрической энергии на значительные расстояния от электростанций к различным потребителям: промышленным предприятиям, населению и т.п, с помощью электродвижущей силы и магнитной индукции.

Трансформаторы позволяют значительно экономить на стоимости проводов, а также снижают потери электроэнергии в линиях электропередач. Так как от силы тока зависит сечение проводов то, увеличивая напряжение и снижая силу тока (не снижая при этом передаваемую мощность) можно эффективно предавать напряжение на значительные расстояния.

передача электроэнергии трансформаторами

Это позволяет экономить на линиях электропередач:

  1. Используя провода с меньшим поперечным сечение, снижается расход цветных металлов;
  2. Уменьшаются потери мощности при передаче электроэнергии на большие расстояния.

На электростанциях вырабатывается электрическая энергия посредством синхронных генераторов и составляет от 11 кВ до 20кВ, в некоторых случаях может применяться напряжение 30-35 кВ. Эти величины не подходят как в быту, так и на промышленном производстве из-за слишком высокого напряжения. Но эти напряжения также недостаточны для экономичной передачи электроэнергии на расстояния. Поэтому на выходе из электростанций ставятся повышающие трансформаторы, которые повышают напряжение до 750 кВ, U=750kV напряжение которое непосредственно передается по линиям электропередач.

Приемники электрической энергии: различные бытовые приборы, электродвигатели, станки на производстве из-за соображения безопасности и конструктивными сложностями изготовления (требования к усиленной изоляции), также не могут работать с такими высокими напряжениями. Они рассчитываются на более низкое напряжения, как правило, это 220V в быту и 380V на производстве.

Повышающие трансформаторы используют для передачи электроэнергии на большие расстояния, понижающие для распределения электроэнергии в точке разветвления потребителей.

Электрическая энергия по пути движения от электростанции до потребителя может трансформироваться 3 или 4 раза. Преобразование электроэнергии происходит с помощью магнитопровода трансформатора и переменного магнитного поля.

Группы соединений обмоток

Для включения трансформатора на параллельную работу с другими трансформаторами имеет значение сдвиг фаз между э. д. с. первичной и вторичной обмоток. Для характеристики этого сдвига вводится понятие о группе соединений обмоток.

Рисунок 2. Группы соединений однофазного трансформатора

На рисунке 2, а показаны обмотки однофазного трансформатора, намотанные по левой винтовой линии и называемые поэтому «левыми», причем у обеих обмоток начала A, a находятся сверху, а концы X, x – снизу. Будем считать э. д. с. положительной, если она действует от конца обмотки к ее началу. Обмотки на рисунке 2, а сцепляются с одним и тем же потоком. Вследствие этого э. д. с. этих обмоток в каждый момент времени действуют в одинаковых направлениях – от концов к началам или наоборот, то есть они одновременно положительны или отрицательны. Поэтому э. д. с. EA и Ea совпадают по фазе, как показано на рисунке 2, а. Если же у одной из обмоток переменить начало и конец (рисунок 2, б), то направление ее э. д. с., действующей от конца к началу, изменится на обратное и э. д. с. EA и Ea будут иметь сдвиг 180°. Такой же результат получится, если на рисунке 2, а одну из обмоток выполнит «правой».

Для обозначения сдвига фаз обмоток трансформатора векторы их линейных э. д. с. уподобляют стрелкам часового циферблата, причем вектор обмотки ВН принимают за минутную стрелку и считают, что на циферблате часов она направлена на цифру 12, а вектор обмотки НН принимают за часовую стрелку. Тогда на рисунке 2, а часы будут показывать 0 или 12 часов, и такое соединение обмоток поэтому называется группой 0 (ранее в этом случае применялось название «группа 12»). На рисунке 2, б часы будут показывать 6 часов, и такое соединение называется группой 6. Соответственно соединение обмоток однофазных трансформаторов согласно рисунку 2, а обозначается I/I-0, а согласно рисунку 2, б – I/I-6. В России стандартизированы и изготовляются однофазные трансформаторы только соединением I/I-0.

Рисунок 3. Трехфазный трансформатор со схемой и группой соединений Y/Y-0

Рассмотрим теперь трехфазный трансформатор с соединением обмоток ВН и НН в звезду, причем предположим, что 1) обмотки ВН и НН имеют одинаковую намотку (например, «правую»); 2) начала и концы обмоток расположены одинаково (например, концы снизу, а начала сверху); и 3) одноименные обмотки (например, A и a, а также B и b, C и c) находятся на общих стержнях (рисунок 3, а). Тогда звезды фазных э. д. с. и треугольники линейных э. д. с. будут иметь вид, показанный на рисунке 3, б. При этом одноименные векторы линейных э. д. с. (например, EAB и Eab) направлены одинаково, то есть совпадают по фазе, и при расположении их на циферблате часов, согласно изложенному правилу, часы будут показывать 0 часов (рисунок 3, в). Поэтому схема и группа соединений такого трансформатора обозначается Y/Y-0.

Если на рисунке 3, а произвести круговую перемаркировку (или перестановку) фаз обмотки НН и разместить фазу a на среднем стержне, фазу b – на правом и c – на левом, то на векторной диаграмме НН (рисунок 3, б) произойдет круговая перестановка букв a, b, c по часовой стрелке. При этом получится группа соединений 4, а при обратной круговой перестановке будет группа соединений 8. Если переменить местами начала и концы обмоток, то получатся еще группы соединений 6, 10 и 2. Значит, при соединении по схеме Y/Y возможно шесть групп соединений, причем все они четные. Такие же группы соединений можно получить при схеме соединений Δ/Δ.

Рисунок 4. Трехфазный трансформатор со схемой и группой соединений Y/Δ-11

Допустим теперь, что обмотки соединены по схеме Y/Δ, как показано на рисунке 4, а, и соблюдены те же условия, которые были оговорены для рисунка 3, а. Тогда векторные диаграммы э. д. с. обмоток ВН и НН будут иметь вид, показанный на рисунке 4, б. При этом одноименные линейные э. д. с. (напрмер, EAB и Eab) будут сдвинуты на 30° и расположатся на циферблате часов, как показано на рисунке 4, в. Соединение обмоток такого трансформатора обозначаются Y/Δ-11. При круговых перестановках фаз и при перемаркировке начал и концов одной из обмоток (или при установке вместо перемычек ay, bz, cx  в треугольнике на рисунке 4, а перемычек az, bx, cy) можно получить также другие нечетные группы: 1, 3, 5, 7 и 9.

Большой разнобой в схемах и группах соединений изготовляемых трансформаторов нежелателен. Поэтому ГОСТ 11677-85,»Трансформаторы силовые. Общие технические условия», предусматривает изготовление трехфазных силовых трансформаторов со следующими группами соединений обмоток: Y/Y0-0, Y0/Y-0, Y/Δ-11, Y0/Δ-11, Y/Z0-11,  Δ/Y0-11, и Δ /Δ-0. При этом первым обозначено соединение обмотки ВН, вторым – соединение обмотки НН, а индекс «0» указывает на то, что наружу выводится нулевая точка обмотки.

Подключение трансформатора тока

Подключение трансформатора тока в цепь может осуществляться сразу несколькими способами:

Схема 1

Итак, данная система состоит сразу из трех трансформаторов тока, которые обобщены и закреплены в одну звезду. Эту схему принято использовать в качестве цепной защиты от короткого замыкания (будь то многофазное или однофазное замыкание). В том случае, если по цепи проходит ток ниже установленного уровня реле (ka 1-ka 3), то режим работы будет считаться нормальным и цепная защита короткого замыкания не сработает.

Схема №1

Стоит сказать, что ток, протекающий в цепи от ka 0-реле, принято воспринимать в виде геометрической суммы тока (сумма всех 3-х его фаз) Если увеличить в какой-либо фазе ток, то защитная цепь короткого замыкания включится в работу (реле (ka 1-ka 3)).
Для отключения трансформатора в этой цепи и схеме необходимо по-просту приземлить ток.

Схема 2

Вторая схема подключения трансформатора тока в цепь имеет схожие черты с первой. Однако, есть существенные отличия, о которых нельзя не сказать

Итак, это структура, включающая несколько трансформаторов тока, как правило, используется в целях безопасности цепи от межфазного замыкания (важное замечание — электрическая цепь имеет нейтральную заземленность)

Схема №2

Данная система начнет работать в случае прохождения тока через реле (опять же ka 1-ka 3) и наличия не самых мощных элементов (потребителя и источника).

Схема 3

Пришло время поговорить и о схеме под номером три, не имеющей серьезных отличий от предыдущих. Она представляет из себя некое соединение в форме треугольника, где нормальный режим работы осуществляется путем проникновения тока в реле.

Схема №3

Как правило, эта структура применяется в электрических установках для проведения релейных ( релейных — означает дифференциальных, которые отличаются своей селективностью и быстротой действия).

Схема 4

И, наконец, последний — четвертый вид схемы.

Схема №4

Данная структура считается достаточно практичной и универсальной. Это связано с тем, что процесс подключения трансформатора тока в таком виде не только позволяет защитить электрическую цепь от однофазных/межфазных замыканий, но и способна повысить величину тока в необходимых реле.

Отключение также происходит путем заземления.

Требования к конструкции

При выборе конструкции отталкиваются от того, для чего нужен трансформатор. Зачем устанавливать шинный или проходной ТТ, если напряжение, с которым ему придётся работать, лежит в пределах от 1 до 3 кВ?

К требованиям можно отнести следующие пункты:

  • выбранное устройство должно подходить к условиям эксплуатации и месту установки;
  • при наружном применении выводы трансформатора должны содержать защитные крышки;
  • выводы обмоток обязаны иметь маркировку;
  • наличие мест захвата для подъёма у тяжёлых ТТ (более 50 кг);
  • знак заземления у места присоединения заземляющего проводника.

Выполнение всех контактных зажимов обмоток выполняются согласно требований ГОСТ 10434-82 (при внутренней установке) и ГОСТ 21242-75 (при наружном размещении).

Монтаж, подключение, опасные факторы

При пробое изоляции обмоток возникает возможность поражения током, но риск предотвращается заземлением вывода (обозначается на корпусе) вторички.

На выводы вторичной катушки И1 и И2 токи полярные, они обязательно постоянно подсоединены на нагрузку. Идущая по первичной цепи энергия со значительным потенциалом (S=UI). В другой происходит трансформация, и при обрыве в ней там падает напряжение. Потенциал разомкнутых концов при протекании энергии большой, что представляет значительную опасность.

По описанным выше причинам все вторичные цепи ТТ собирают особо тщательно и надежно, на них и кернах, выведенных из функционирования, всегда ставят шунтирующие закоротки.

Как подключается ТТ

Есть несколько схем для изделий защитного типа. Рассмотрим подключение ТТ на трехфазное напряжение.

Полная звезда:

  • самая распространенная, защита одно- и многофазных систем от КЗ;
  • три ТТ соединяются в звезду.

Если ток ниже настроек на реле КА1–КА3, то это нормальная ситуация, защита не активируется. Ток на К0 — это сумма всех 3 фаз. При возрастании величин в одной из них растет ток и в ТТ. Произойдет сработка реле при КЗ и при превышении нагрузок.

Неполная звезда:

  • защита от межфазных замыканий для создания цепей с нейтралью с заземлением;
  • для маломощных приемников с другими вариантами защиты.

Схема «треугольник и звезда» — для дифференциальной защиты.

Схема без обесточивания при КЗ на землю используется, но редко по этой же причине. Для защиты от замыканий между фазами и всплесков в одной из них.

ТТИ подсоединяются простым последовательным подключением первичных витков изделия.

Монтаж

Монтаж трансформаторов тока:

  1. Ревизия устройства, проверка изоляции (должно быть выше 1 кОм на 1 В);
  2. Отключают ЭУ;
  3. Убедится в обесточивании, зафиксировать заземления.
  4. Разметка, установка креплений. Запрещено размещать трансформатор вплотную к ЭУ (минимальный зазор — 10 см).
  5. Выставляются таблички, ограждения.
  6. Первичные витки подсоединяются последовательно, но с нагрузкой на вторичных. Если нет возможности подключить измеритель, то ее контакты замыкают, чтобы не было высоких мощностей на ней, которые приведут его повреждению.

ТТ не допускает холостого функционирования, его режим близок к КЗ: вторичные витки при подключении прибора к измеряемому току обязательно замыкаются. Иначе происходит перегревание, повреждающее изоляцию. Перед отсоединением измерителей сначала закорачивают катушки. У некоторых моделей для этого есть узлы клеммы, перемычки.

Расчет

Расчет трансформатора тока можно провести по онлайн-калькуляторам, подобрать по номиналу (например, для 10 кВ). Но это слишком упрощенные инструменты. Исчисления и параметры для выбора — чрезвычайно обширная тема, поэтому опишем основы.

Точность чрезвычайно важная, поэтому потребуются тщательные исчисления специалистами. Необходимо знать множество специфических нюансов, например:

  • при разных схемах подсоединения, видах КЗ, есть разные формулы определения сопротивления;
  • проверяют первичный ток на термо- и электродинамическую стойкость;
  • есть свои нюансы для ТТ, для релейной защиты и для учетных целей, измерений.

Правила, как выбрать трансформатор тока в общих чертах:

  • номинальное рабочее напряжение ТТ должно превышать или сравниваться с номиналом ЭУ (стандартные значения 0.66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750 кВ). Если обслуживаемое оборудование имеет 10 кВ, то изделие должно быть рассчитано на этот показатель;
  • первичный ток ТТ — больше номинального тока у ЭУ, но учитывая перегрузочную способность;
  • оценивают ТТ по номинальной мощности вторичной нагрузки, которая должны превышать расчетное ее значение. (Sном>=Sнагр);
  • оценивают размеры и расположение для установки, номинальные нагрузки (есть таблица), наработка до отказа, срок службы, класс точности.

Проверка после расчета

Правила:

  • после расчета ТТ проверяют по загрузке при макс. и мин. значениях, протекающих через него нагрузок;
  • по п. 1.5. 17 ПУЭ при макс. подключенной нагрузке ток во вторичной катушке — не менее 40 % номинала счетчика, при мин. — не менее 5 %;
  • макс. загрузка должна быть от 40 %, а мин. — от 5 %, и в любом случае она не должна превышать 100 %, иначе возникнет перегрузка трансформатора;
  • если рассчитанные величины макс./мин. загрузок меньше 40 % и 5 % соответственно, то надо подбирать изделие с меньшим номиналом, а если этого нельзя сделать по параметрам макс. нагрузки, надо предусмотреть монтаж двух счетчиков — для макс. и мин. нагрузки.

Для чего нужны измерительные трансформаторы тока и напряжения

Трансформатор принадлежит к классу статических электромагнитных аппаратов, который преобразует ток одного напряжения в переменный ток другого напряжения. Измерительные трансформаторы признаны одними из самых надежных элементов в системе энергообеспечения. 

Помимо определения показателей нагрузки и напряжения служат для присоединения аппаратуры автоматического регулирования и защитных устройств. С помощью измерительных трансформаторов:

  • снижают габариты и вес приборов измерения;

  • повышают уровень безопасного обслуживания оборудования;

  • предупреждают последствия от ошибочных действий электротехнического персонала;

  • расширяют пределы измерения переменного тока.

Для чего нужен трансформатор напряжения?

Трансформатор напряжения – универсальное устройство. Передает и распределяет энергию.

Используются в:

  • электроустановках;
  • блоках питания;
  • агрегатах передачи электроэнергии;
  • устройствах обработки сигналов;
  • источниках питания приборов.

Силовой трансформатор с большим напряжением применяется для:

  • подачи энергии в электросети на электростанциях;
  • повышения напряжения генератора, линии электропередач;
  • снижения напряжения, доходящего до потребительского уровня.

Трехфазный прибор со специальной системой охлаждения используется в электросетях. Сердечник в составе – общий для всех 3-ех фаз.

Область применения сетевого трансформатора – источники электропитания, узлы электроприборов с разным напряжением. Импульсные агрегаты незаменимы для радиотехнических, электронных устройств. Сначала выпрямляют переменное напряжение в блоках питания. Далее за счет инвертора преобразуют высокочастотные импульсы, стабилизирующие постоянное напряжение.

Трансформаторы входят в состав многих схем питания для обеспечения минимального уровня высокочастотных помех. Например, разделительные установки предотвращают угрозу поражения электрическим током для человека. Ведь включение бытовых приборов в сеть через трансформатор становится безопасным.

Вторая цепь у прибора будет изолирована от контактов с землей, если конечно, речь идет о заземлении электрического оборудования. Измерительные силовые приборы применяются в схемах генераторов переменного тока. Количество фаз у генератора из трансформатора должно совпадать для достижения стабильного напряжения на выходе.

Согласующие трансформаторы незаменимы для электронных устройств с высоким входным сопротивлением и высокочастотных линий, но с разным сопротивлением нагрузки.

Включение измерительных трансформаторов тока и напряжения

Измерительные трансформаторы напряжения

Измерительные трансформаторы напряжения предназначены для возможности измерения высокого напряжения электроустановок переменного тока путем снижения этого напряжения для подачи на защитные реле, приборы измерения и системы автоматики.

При отсутствии измерительных трансформаторов понадобилось бы применять приборы и реле с большими габаритными размерами, так как необходима надежная изоляция от высокого напряжения, которая увеличивает размеры устройств. Изготовить такое оборудование практически невозможно, так как напряжения линий могут достигать величины 110 киловольт.

Измерительные трансформаторы для замера напряжения дают возможность применять стандартные обычные приборы для измерений электрических параметров, при этом увеличивая их диапазон измерения. Защитные реле, подключаемые через эти трансформаторы, могут применяться обычного исполнения.

Трансформатор напряже­ния выполняют в виде двухобмоточного понижа­ющего трансформатора (рис. 3.33,а). Для обеспечения безопасности работы обслуживающего персонала вторичную обмотку тщательно изолируют от первичной и заземляют.

Рис. 3.33. Схема включения (а) и век­торная диаграмма измерительного трансформатора напряжения (б)

Так как сопротивления обмоток вольтметров и других приборов, подключаемых к трансформатору на­пряжения, велики, то он практически работает в режиме холостого хода. В этом режиме можно с достаточной степенью точности считать, чтоUl = U’2=U2k.

В действительности ток холостого хода I0 (а также не­большой ток нагрузки) создает в трансформаторе падение напряжения, поэтому, как видно из векторной диаграммы (рис. 3.33, б), и между векторами этих напряжений имеется некоторый сдвиг по фазе δu. В результате при изме­рениях образуются некоторые погрешности.

Трансформаторы тока или измерительные трансформаторы преобразуют высокий первичный ток нагрузки в безопасное значение, удобное для проведения измерений.

Трансформаторы тока для электросчетчиков

трансформатор тока в электросчетчиках

Трансформаторы тока для электросчетчиков нормально функционируют при рабочей частоте в 50 Гц и вторичном номинальном токе в 5 ампер. Поэтому, если коэффициент трансформации составляет 100/5, это означает максимальную нагрузку в 100 ампер, а значение измерительного тока – 5 ампер.

Следовательно, в этом случае показания трехфазного счетчика умножаются в 20 раз (100/5). Благодаря такому конструктивному решению, отпала необходимость в изготовлении более мощных приборов учета. Кроме того, обеспечивается надежная защита счетчика от коротких замыканий и перегрузок, поскольку сгоревший трансформатор меняется значительно легче по сравнению с установкой нового счетчика.

Существуют определенные недостатки при таком подключении. Прежде всего, измерительный ток в случае малого потребления, может быть меньше стартового тока счетчика. Следовательно, счетчик не будет работать и выдавать показания. В первую очередь это касается счетчиков индукционного типа с очень большим собственным потреблением. Современные электросчетчики такого недостатка практически не имеют.

Особое внимание при подключение нужно обращать на соблюдение полярности. Первичная катушка имеет входные клеммы. Одна из них предназначена для подключения фазы и обозначается Л1

Другой выход – Л2 необходим, чтобы подключиться к нагрузке. Измерительная обмотка также имеет клеммы, обозначаемые соответственно, как И1 и И2. Кабель, подключаемый к выходам Л1 и Л2, рассчитывается на необходимую нагрузку

Одна из них предназначена для подключения фазы и обозначается Л1. Другой выход – Л2 необходим, чтобы подключиться к нагрузке. Измерительная обмотка также имеет клеммы, обозначаемые соответственно, как И1 и И2. Кабель, подключаемый к выходам Л1 и Л2, рассчитывается на необходимую нагрузку.

Для вторичных цепей используется проводник, поперечное сечение которого должно быть не ниже 2,5 мм2.

Рекомендуется применять разноцветные промаркированные провода с обозначенными выводами. Нередко подключение вторичной обмотки к счетчику осуществляется с помощью опломбированного промежуточного клеммника.

Использование клеммника позволяет проводить замену и обслуживание счетчика без отключения электроэнергии, поступающей к потребителям.

Как работает однофазный трансформатор

Работа этого устройства заключается в соблюдении законов электромагнетизма. Когда первая обмотка подключена к источнику питания, через нее начинает течь переменный ток, создавая магнитные токи переменного знака в ферромагнитном сердечнике. Когда этот поток замкнут в сердечнике, он блокирует первичную и вторичную катушки и создает в них электродвижущую силу, пропорциональную количеству витков катушки.

Важно! Когда ток проходит через первичную обмотку, он создает с ее помощью магнитное поле, пронизывающее не только эту обмотку, но и вторичную. Принцип действия и рассеяние магнитных волн

Принцип действия и рассеяние магнитных волн

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий