Выбор счетчика электроэнергии в квартиру
Существуют некоторые моменты, на которые следует обращать внимание при выборе электросчетчика. Ознакомимся с ними
Таблица. Секреты выбора электросчетчика.
Наименование | Краткое описание |
Условия поставщика | В договоре с электрокомпанией может указываться, какой конкретный тип счетчика должен быть установлен. |
Температура эксплуатации | Преимущественное большинство приборов учета рассчитано на рабочую температуру выше нуля, но существуют устройства, способные работать и при +45 градусах. Такие модели можно ставить, скажем, в неотапливаемом помещении либо на улице. |
Паспорт | Счетчик должен иметь паспорт с разрешением на установку на территории РФ и сертификатом соответствия действующему ГОСТу. |
Пломбы | Об их наличии следует осведомиться заранее. Однофазные модели должны иметь пломбу не старше двух лет, в то время как трехфазные – максимум один год. Кроме того, в соответствии с ГОСТом допускается 2-й класс точности. |
Печать госпроверки | Наконец, государственная проверка должна оставить в паспорте к устройству печать пломбы. Причем она должна иметь четкие контуры, быть сделана из красной/черной мастики (изредка покрывается серебрянкой). |
Как подключить электросчетчик через трансформаторы тока?
Схем такого подключения существует несколько. Разберем все эти схемы применительно к трехфазному варианту включения. Для чего нужны электросчетчики? Вообще счетчики нужны для того, чтобы учитывать электрическую энергию, потребленную в трех- и четырехпроводных сетях с частотой тока, равной 50 герц.Счетчики трехфазного типа бывают следующих видов:
- 3*57.7/100 В;
- 3*230/400 В.
К источнику электроэнергии такие счетчики необходимо подключать с использованием измерительных трансформаторов тока, рассчитанных на вторичный ток 5 А и трансформаторов напряжения со вторичным напряжением 100 В.
Рассматриваемые тут схемы применимы к любым типам счетчиков (и к аппаратам индукционного типа, и к электронным).
Первое, что необходимо помнить, выполняя подключение, это то, что при подключении необходимо соблюдение полярности подключения обмоток (Л1, Л2 – первичная; И1, И2 – вторичная) у трансформаторов тока. Полярность обмоток трансформаторов напряжения, так же, подлежит обязательной перепроверке. Сами трансформаторы, тоже нужно выбирать правильно.
О принципах подключения с использованием трансформаторов тока
Начнем рассматривать схемы подключения со счетчиков, имеющих полукосвенное включение. Таких схем существует несколько.
Десятипроводная
В этой схеме разделены цепи питания по току и напряжению, что придает немалый плюс из соображения электрической безопасности.
Отрицательная сторона этой схемы – проводов для подключения надо много.
Теперь разберем назначение имеющихся зажимов:
- Зажим входного провода для фазы А;
- Зажим входного провода измерительной обмотки фазы А;
- Зажим выходного провода для фазы А;
- Зажим входного провода фазы В;
- Зажим входного провода измерительной обмотки фазы В;
- Зажим выходного провода для фазы В;
- Зажим входного провода для фазы С;
- Зажим входного провода измерительной обмотки фазы С;
- Зажим выходного провода для фазы С;
- Зажим входного нулевого провода;
- Зажим нулевого провода.
Контакты трансформаторов тока:
- Л1 – контакт входа фазной (силовой) линии;
- Л2 – контакт выхода фазной линии (нагрузки);
- И1 – контакт входа обмотки измерения;
- И2 – контакт выхода обмотки измерения.
Вот описание схемы такого подключения.
Токовые трансформаторы подключать нужно в разрыв фазных проводов клеммами Л1 и Л2.
Фаза А подключается к клемме Л1 трансформатора тока ТТ1, туда же подключается клемма 2 счетчика. Клемма 1 подключается к контакту И1 ТТ1.
Контакты И2 трансформаторов тока ТТ1 и ТТ2 нужно соединить вместе, в эту же точку подключают контакты 6 и 10 счетчика, после чего все это требуется соединить с нейтралью.
Контакты Л2 всех ТТ подключаются к нагрузке. Теперь рассмотрим подключение остальных контактов:
- Контакт 3 счетчика подключаем на И2 ТТ1;
- Контакт 4 счетчика – И1 ТТ2;
- Контакт 5 счетчика – вход фазы В и клемма Л1 ТТ2;
- Контакт 7 счетчика – клемма И1 ТТ3;
- Контакт 8 счетчика – вход фазы С и клемма Л1 ТТ3;
- Контакт 9 счетчика – клемма И2 ТТ3.
Подключение токовых трансформаторов по схеме «звезда»
В такой схеме нужно меньшее число проводов, чтобы выполнить подключение. В этой схеме клеммы И2 всех токовых трансформаторов, соединяясь вместе, подключаются к клемме 11 счетчика. Контакты 3, 6, 9 и 10, соединившись вместе, подключаем на нулевой провод. Остальные клеммы подключаем так же, как и в предыдущем варианте.
Схема подключения с применением испытательной клеммной коробки
Существует специальное требование для выполнения подключения электросчетчиков через трансформаторы (ПУЭ, гл1.5, п1.5.23), говорящее о том, что это подключение необходимо выполнять с применением испытательного блока (коробки).
Присутствие такой коробки (блока) дает возможность производить замыкание вторичных обмоток токовых трансформаторов, подключить эталонный (образцовый) счетчик без отключения нагрузки и выполнять смену счетчиков, производя отключение всех цепей в испытательной коробке.
Без внимания оставим только одну схему – семипроводную (иначе называемую схемой, имеющей совмещенные цепи напряжения и тока). Не рассматриваем ее по той причине, что такая схема устарела.
Существенным ее минусом считается то, что у нее имеется связь гальванического типа между входными и выходными цепями, а это является источником немалой опасности для тех, кто будет обслуживать электросчетчики.
Вот мы и рассмотрели все существующие схемы подключения электросчетчиков с применением трансформаторов тока. Какой из них использовать, индивидуальное дело каждого. Единственное, что необходимо учитывать при этом, так это индивидуальные особенности места необходимой установки прибора и не забывать про требования специальных правил ПУЭ.
Как подключить неизвестный трансформатор к сети?
Прежде чем подключать трансформатор к сети, нужно прозвонить его обмотки омметром. У понижающих трансформаторов сопротивление сетевой обмотки намного больше, чем сопротивление вторичных обмоток и может отличаться в сто раз.
Первичных (сетевых) обмоток может быть несколько, либо единственная обмотка может иметь отводы, если трансформатор универсальный и рассчитан на использование при разных напряжениях сети.
В двухкаркасных трансформаторах на стержневых магнитопроводах, первичные обмотки распределены по обоим каркасам.
При пробном включении трансформаторов можно воспользоваться приведённой схемой. При неправильном включении предохранитель FU защитит сеть от короткого замыкания, а трансформатор от повреждения.
Рассчитываем ток предохранителя обычным способом:
I = P / U
I – ток, на который рассчитан предохранитель (Ампер),
P – габаритная мощность трансформатора (Ватт),
U – напряжение сети (~220 Вольт).
Пример:
35 / 220 = 0,16 Ампер
Ближайшее значение – 0,25 Ампер.
Схема измерения тока Холостого Хода (ХХ) трансформатора. Ток ХХ трансформатора обычно замеряют, чтобы исключить наличие короткозамкнутых витков или убедится в правильности подключения первичной обмотки.
При замере тока ХХ, нужно плавно поднимать напряжение питания. При этом ток должен плавно возрастать. Когда напряжение превысит 230 Вольт, ток обычно начинает возрастать более резко. Если ток начинает резко возрастать при напряжении значительно меньшем, чем 220 Вольт, значит, либо Вы неправильно выбрали первичную обмотку, либо она неисправна.
Мощность (Вт) | Ток ХХ (мА) |
5 — 10 | 10 — 200 |
10 -50 | 20 — 100 |
50 — 150 | 50 — 300 |
150 — 300 | 100 — 500 |
300 — 1000 | 200 — 1000 |
Ориентировочные токи ХХ трансформаторов в зависимости от мощности.
Нужно добавить, что токи ХХ трансформаторов даже одной и той же габаритной мощности могут очень сильно отличаться. Чем более высокие значения индукции заложены в расчёт, тем меньше ток ХХ.
Схема подключения, при определения количества витков на вольт.
Вернуться наверх к меню
Схемы подключения счетчика через трансформаторы тока
Схематичность соединения датчиков с ТТ имеет несколько вариантов, которые могут использоваться при подключении.
Подключение счетчиков через трансформатор подразделяется на несколько групп:
- косвенное;
- полукосвенное;
- звезда.
Полукосвенное
Полукосвенным подключением пользуются многие крупные производства и предприятия, питающиеся от электросети мощностью свыше 0,4 кВт при силе тока более 100 А.
Подсоед инениетрехфазных измерителей с использованием ТТ, может выполняться тремя способами:
- Семипроводная схема подключени я трехфазного счетчика применяется реже других. Это обуславливается тем, что все электроцепи и соединения пребывают под нагрузкой, что снижаетбезопасность обслуживания.
- Более безопасным способом подключения является десятипроводная схема. Здесь отсутствует гальваническая связь электроцепей с прибором учета.
- Самым распространенным подсоединением счетчиков через тт, является схема, с включением клеммной испытатель ной коробки икк. Этот метод позволяет осуществлять ремонт и обслуживание прибора, без обесточивания цепи.
Звезда
В некоторых случаях, когда подключаются три трансформатора с изолированной нейтралью применяют схему звезды. Три фазы подсоединяют на клемму Л1 к каждому ТТ. От Л1 первого ТТ подключается 2-й контакт счетчика, от Л1 второго ТТ — 5-й контакт и клемма третьего трансформатора к 8-му контакту прибора. Л2 каждого ТТ подсоединяют к нагрузке.
Косвенное
Метод косвенного включения применяют в тех случаях, когда электросчетчик подсоединяется посредством ТТ и трансформатора напряжения ТН. Подобные схемы чаще всего применяют на производстве, где требуются источники высокого напряжения. В зависимости от того, как подключать электросеть используя трехфазный измеритель, может понадобится дополнительные трансформаторные подстанции.
Такие устройства имеют от 10 до 11 клемм. Таким образом клеммы 1, 3, 4, 6, 7 и 9 применяют для контакта с ТТ, а клеммы 2, 5 и 8 подключают к трансформаторам напряжения. Иногда данную схему применяют при полукосвенном подключении или напрямую.
Надежность измерительных трансформаторов напряжения в сети с изолированной нейтралью
Простой измерительный аппарат предназначен для понижения номиналов напряжения, которое подается на измерители и защитные реле, подключенные к сети 6-10 кВ. Трансформатор исправно работает только в условиях заземления нейтрали.
При феррорезонансных реакциях (обрыв фазы ЛЭП, прикосновение ветвями, стекание капель росы по проводам, некорректная коммутация) существуют риски поломок трансформаторов напряжения. Частота сбоев составляет 17 и 25 Гц. В этих условиях через первичную обмотку протекает сверхток и она перегорает.
Если используется схема «Звезда-Звезда», в условиях повышения напряжения повышается индукция магнитопровода. Прибор перегорает. Предотвратить этот процесс можно при помощи:
- уменьшения показателей рабочей индукции;
- подключения в сети устройств, демпфирующих сопротивление;
- создания трехфазного устройства с общей магнитной пятистержневой системой;
- эксплуатации аппаратов, подключенный в сеть при размыкании треугольника;
- заземления нейтрали посредством реактора-токоограничителя.
Трансформаторы тока для электросчетчиков – характеристики и варианты подключения
При эксплуатации энергетических систем разного типа часто возникают ситуации, требующие осуществить перевод электрических величин в аналоги с определенными соотношениями.
Трансформаторы тока для электросчетчиков позволяют значительно расширить стандартные пределы измерений приборами учёта.
Номинальное напряжение трансформатора тока
Одним из основных параметров, относящихся к трансформаторам тока для электрических счётчиков, является уровень номинального напряжения, который указывается в паспорте на прибор. Номинальные значения напряжения варьируется от 0.66кВт до 1150кВт:
- 0,66 кВт;
- 6.0 кВт;
- 10 кВт;
- 15 кВт;
- 20 кВт;
- 24 кВт;
- 27 кВт;
- 35 кВт;
- 110 кВт;
- 150 кВт;
- 220 кВт;
- 330 кВт;
- 500 кВт;
- 750 кВт;
- 1150 кВт.
Номинальные значения уровня первичного тока на электрической цепи обозначают токовые показатели на первичной трансформаторной обмотке.
Параметры вторичного номинального тока — это стандартные показатели на обмотке вторичного типа. Определение таких токовых потоков осуществляется по номинальным значениям мощности и напряжения.
При этом первичный тип обмотки подключается к источнику электрической энергии, а замыкание вторичной обмотки приходится на устройства измерительного или защитного типа, с низкими показателями внутреннего сопротивления.
Действующие параметры номинального или линейного напряжения, в условиях которых сохраняется работоспособность измерительного токового трансформатора, обязательно указываются в сопроводительной документации и отражены в таблице для прибора.
Класс точности
При правильном выборе токового трансформаторного устройства у потребителя появляется реальная возможность подключать измерительные и защитные приборы к высоковольтным электрическим линиям. Уровень класса точности – одна из наиважнейших характеристик, указывающих на измерительную погрешность, которая не должна быть выше, чем параметры по нормативным документам.
Класс точности определяется несколькими основными факторами, включая погрешности по току и углу, а также показатели относительной полной погрешности. Первые два понятия всегда характеризуются током намагничивания.
Принцип работы трансформатора тока
В приборах промышленного назначения используется несколько классов точности:
В соответствии с действующим на сегодняшний день в нашей стране ГОСТом, класс точности должен быть ориентирован на токовые погрешности, поэтому для показателей в ±40′ предполагается класс 0.5, а для ±80′ – класс 1.0. Следует отметить, что классы 3.0 и 10Р по существующим правилам не нормируются.
Обратите внимание
Наличие в маркировке буквенного обозначения «S» свидетельствует о классе точности в пределах 0.01-1.2.
Класс 10Р используется в защитных цепях, а нормирование осуществляется в соответствии с относительной полной погрешностью не более десяти процентов.
Допускается применение приборов с классом точности 1.0, но только если электрический счетчик обладает классом точности в две единицы.
Измерительно-информационная система, представленная устройствами, выполняющими приём, обработку и передачу данных, а также приборами учёта, способна формировать корректные показатели только при высокой точности токовых трансформаторов.
Для учёта в коммерческой сфере уровень класса точности должен составлять 0.5S, а для учёта технического – 1.0S.
Номинальный ток вторичной обмотки
Строение вторичной обмотки у токовых трансформаторов, которые предназначены для напряжения не более тысячи вольт, имеет некоторые отличия. На высоковольтном приборе устанавливается как минимум две вторичные обмотки.
Принцип их действия аналогичен функционированию повышающего трансформатора. Вне зависимости от уровня мощности первичной обмотки, номинальные показатели тока на вторичной обмотке, как правило, стабильно составляют 5А.
Пример расчета
Рассмотрим, как рассчитать показания счетчика электроэнергии с трансформаторами тока с коэффициентом трансформации 100/5=20.
Например, на счетчике было значение, на 200 кВт превышающее цифру, списанную в начале периода.
При поиске ответа на вопрос, как рассчитать показания счетчика электроэнергии непрямого подключения с трансформаторами тока, важно учесть, что погрешность между реальным значением и указанным в техдокументации не должна превышать 2%. Показание должно быть снято с рабочего ответвления
Решая вопрос, как посчитать показания счетчика электроэнергии, включенного в сеть с трансформатором тока, необходимо учитывать, что у любого прибора есть определенный срок службы. После того, как он закончился, не стоит надеяться, что считанные показания будут точные.
При покупке преобразователя необходимо проверить год и месяц выпуска. Это оборудование проверяется каждые 4 года, поэтому не должно быть просроченное.
Данные на шильдике изделия должны полностью совпадать с информацией в техпаспорте.
При выборе трехфазного ТТ необходимо учесть, что период со дня выпуска до пломбирования не должен превышать 12 месяцев. В противном случае возникнут дополнительные затраты на покупку другого преобразователя или госпроверку уже приобретенного.
Электроэнергия, как и любой другой вид энергии, для потребителей является товаром. Чтобы знать о количестве произведённой и потребляемой энергии, нужны соответствующие средства учёта. Для населения такими средствами учёта потребляемой энергии служат электросчётчики. Существует много видов счётчиков, различающихся как по схеме внешнего электроснабжения, так и по мощности, которую расходует потребитель электроэнергии.
Так, для однофазных сетей напряжением 220 вольт применяют бытовые электросчётчики различных моделей с максимальным током до 40 ампер. Для электрических сетей напряжением 380 вольт применяют трехфазные счётчики. В зависимости от нагрузки счётчики делятся на счётчики прямого включения, полукосвенного и косвенного включения. В счётчиках косвенного включения применяется схема, при которой потребляемая нагрузка подключается через трансформаторы тока. Такая схема подключения позволяет измерять высокую потребляемую мощность приборами, рассчитанными на низкие показатели мощности. При помощи измерительных трансформаторов происходит перерасчёт потребляемой электроэнергии с соответствующим трансформатору тока коэффициентом.
Установка трехфазного электросчётчика
Хотя в установке электросчётчика особых сложностей нет лучше, чтобы эту работу выполняли квалифицированные специалисты. Рассмотрим установку трехфазного электросчётчика с измерительными трансформаторами на примере счётчика Меркурий. Эта модель счётчиков является одной из самых распространённых в нашей стране.
Прежде чем приступить к монтажу электросчётчика рекомендуется выполнить монтаж входного автоматического выключателя. Наличие такого автоматического выключателя поможет более безопасному и быстрому выполнению различных ремонтных или профилактических работ. Далее, устанавливается непосредственно счётчик Меркурий и трансформаторы тока. Затем осуществляется монтаж проводов на клеммную колодку счётчика в соответствии со схемой подключения. Включив автоматический выключатель, проверяется работоспособность прибора учёта по счётчику показаний электроэнергии.
Счётчики учёта электроэнергии старого поколения типа Меркурий с трансформаторами тока в наше время вытесняются более передовыми и эффективными средствами учёта электроэнергии. Трехфазные счётчики нового поколения Меркурий можно программировать на различные режимы работы, менять тарифный план и даже дистанционно передавать показания электроэнергии.
Каждый потребитель электроэнергии обязан иметь учетное устройство, позволяющее контролировать расход потребляемого электричества. Электрические счетчики отличаются по внешнему виду, способу подсоединения и имеют различную нагрузку. Трехфазные устройства подключаются посредством трансформаторов тока, преобразовывающих ток до оптимальных значений, при которых устройство может нормально работать.
Трансформаторы тока ТПП-Н-0.66 и ТПП-0.66
Измерительные трансформаторы тока ТПП-Н-0.66 и ТПП-0.66 предназначены для масштабного преобразования силы переменного тока и его дальнейшего измерения приборами учета, защиты автоматики, сигнализации и управления в сетях частотой 50 Гц и номинальным напряжением до 0.66 кВ включительно.
Проходные трансформаторы тока применяются в цепях коммерческого учета электрической энергии (трансформаторы тока для счетчиков активной электрической энергии) для расчета с потребителями, а также в схемах измерения и защиты.
Проходные измерительные трансформаторы тока ТПП-Н-0.66 и ТПП-0.66 – инновационные продукты от компании «Юджэн».
Основные преимущества трансформаторов «Юджэн» — это:
- Магнитопроводы измерительных трансформаторов тока изготовлены из нанокристаллического сплава, обеспечивая долговременную стабильность параметров в течении 30 лет
- Быстрый монтаж на объектах непосредственно на жилу кабеля или дополнительную кронштейн-шину с помощью прижимного винта или кабельной стяжки за счет удобного широкого отверстия
- Дополнительный крепеж в виде вставки для быстрого крепления на шину
- Лучшая защищенность от краж электроэнергии из-за отсутствия соединений в цепи первичного тока
- Отличаются от аналогов на рынке своей конкурентоспособной ценой, обладая всеми необходимыми техническими характеристиками
- Гарантия 5 лет
- Соответствуют требованиям технического регламента Таможенного союза «О безопасности низковольтного оборудования» ТР ТС 004/2011 (ГОСТ 12.2.007.0-75).
Область применения проходных измерительных трансформаторов тока ТПП-Н-0.66 и ТПП-0.66
- на сборках ЩРНВ в типовых подстанциях 2БКТП, 2ТО
- установка на сборках СБ, ЩО, МКС на подстанциях типа 2ТО, ТК, БКТПу
- на вводах в многоквартирных домах
Технические характеристики
Наименование параметра
Номинальный первичный ток
0,2S и 0,5S: 100, 150, 200, 250, 300, 400, 500, 600, 750, 800, 1000, 1200 А
голоса
Рейтинг статьи
Правила выбора
При выборе трансформатора его напряжение не должно быть меньшим, чем номинальное напряжение счетчика.
U ном ≥ U уст
Аналогично поступаем при выборе ТТ по току, который должен быть равен или больше максимального тока контролируемой установки. С учетом аварийных режимов работы.
I ном ≥ I макс.уст
В ПУЭ описаны правила и нормативные требования к устройствам коммерческого учета счетчиками, а также уделено не мало внимания трансформаторам тока и нормам расчетных мощностей. Детально ознакомится можно в пункте ПУЭ 1.5.1 (Глава 1.5).
Помимо этого существуют следующие правила выбора трансформатора тока для счетчика:
- Длина и сечение проводников от ТТ к узлу учета должны обеспечивать минимальную потерю напряжения (не более 0.25% для класса точности 0.5 и 0.5% для трансформаторов точностью 1.0). Для счетчиков, используемых для технического учета, допускается падение напряжения 1.5% от номинального.
- Для систем АИИС КУЭ трансформаторы должны иметь высокий класс точности. Для установки в такие системы используют ТТ класса S 0.5S и 0.2S, позволяя увеличить точность учета при минимальных первичных токах.
- Для коммерческого учета нужно выбрать класс точности ТТ не более 0.5. При использовании счетчика точностью 2.0 и для технического учета, допускается применение трансформатора класса 1.0.
- Выбор ТТ с завышенной трансформацией допускается, если при максимуме тока нагрузки, ток в трансформаторе не меньше 40% от I ном электросчетчика.
- При расчете количества потребленной энергии необходимо учитывать коэффициент преобразования.
- Расчет параметров ТТ производится в зависимости от сечения проводника и расчетной мощности.
По таблице ниже, согласно получившимся расчетным параметрам выбираем ближайший ТТ:
При заключении договора с энергоснабжающей организацией, в случае когда для производства учета необходима установка трансформаторов тока, для организации узла учета, выдаются технические условия, в которых указано модель узла учета а также тип ТТ, номинал автоматических выключателей место их установки для конкретной организации. В результате самостоятельные расчеты ТТ производить не нужно.
Напоследок советуем читателям https://samelectrik.ru просмотреть полезное видео по теме:
Надеемся, теперь вам стало понятно, как выбрать трансформаторы тока для счетчиков и какие варианты исполнения ТТ бывают. Надеемся, предоставленная информация была для вас полезной и интересной!
Наверняка вы не знаете:
Виды и правила выбора преобразователя электротока
Трансформаторное оборудование, снижающее электроток (ТТ), классифицируется по различным характеристикам, в том числе коэффициенту преобразования. Это оборудование требуется, если объект потребляет мощности, которые в несколько раз превышают возможности обычного узла.
ТТ преобразует ток до уровня, позволяющего подключить для контроля обычные электросчетчики на одну или три фазы и создать систему защиты линии.
Классификация
По способу монтажа
ТТ по такому принципу делятся на:
- опорные (устанавливаемые на поверхности);
- проходные (прикрепленные к шинопроводу);
- шинные (прикрепленные к шине);
- встроенные в системы силового электротока;
- разъемные (установленные на кабелях).
По типу изоляции
Трансформатор электротока может быть:
- с эпоксидной смолой или специальным лаком;
- в пластиковом корпусе;
- с твердой изоляцией из фарфора, бакелита. твердого пластика;
- с вязким составом (маслом);
- наполненные газом;
- с масляно-бумажной изоляцией.
Какие параметры учитывать
Для расчета показаний электросчетчика с трансформаторами тока важен коэффициент трансформации. Он может быть одноступенчатый или каскадный (многоступенчатый). Последний вид ТТ отличается наличием нескольких вторичных обмоток и большим количеством витков в первичной обмотке.
Нежелательно покупать ТТ со слишком высоким уровнем трансформации. При подобном выборе придется устанавливать счетчик на приемный вход. Более популярны преобразователи с одним коэффициентом, не меняющие показание во время эксплуатации. При их использовании проблема, как считаются показания счетчика электроэнергии, подключенного через трансформаторы тока, решается проще.
Расчет электроэнергии по счетчику с трансформаторами тока можно провести только в том случае, если известен коэффициент трансформации. Он должен быть указан в техдокументации, с которой продавался ТТ, и на корпусе. При подозрениях на неточности в отображаемых цифрах коэффициент можно посчитать самостоятельно.
Чтобы рассчитать коэффициент, необходимо подключить преобразователь к электротоку, создающему короткое замыкание во вторичной обмотке, и измерить, сколько ампер в ней.
Коэффициент трансформации – соотношение значений поданного электротока и проходящего во вторичной обмотке.
Например, если короткое замыкание вызвали 150 А, на вторичной обмотке 5 А, действительный коэффициент 30. Это более точное значение, чем номинальное, которое определяется по номинальному электротоку первичной и вторичной обмотки. Результат расчета показаний электросчетчика с трансформаторами тока более точный.
Подключение электросчетчика с трансформаторами тока
Одной из важнейших характеристик любого электросчетчика является его номинальный ток. То есть ток, который прибор может не только посчитать, но и долговременно через себя пропускать. Если в вашем доме стоит очень мощное оборудование, а потребляемый им ток имеет большие значения, то подобрать подходящий электросчетчик не удастся – счетчиков для таких мощностей просто не существует в природе. Как тут быть? Выход из положения – установка трансформаторов тока (ТТ).
Как работает и для чего нужен
Основной задачей прибора является пропорциональное преобразование тока одной величины в ток другой. Конструктивно изделие представляет собой железный сердечник, на котором размещены две обмотки. Первая включается в разрыв сети, состояние которой нужно контролировать, а вторая – к электросчетчику. Электроэнергия, проходя по первой обмотке, будет наводить ЭДС во второй, а отношение токов в этих катушках будет пропорционально отношению количества их витков.
Принцип работы токового трансформатора
Если, к примеру, первичная обмотка имеет 2 витка, а вторичная 20, то введенный во вторичной обмотке ток будет в 10 раз ниже тока первичной. В этом случае говорят, что коэффициент трансформации прибора 10 к 1 (10/1). Предположим, ваш токарный станок потребляет ток в 200 А. Такую мощность не выдержит ни один электросчетчик. Но если вы подключите прибор через ТТ, рассмотренный выше, то максимальная нагрузка через счетчик не будет превышать 200/10 = 20 А.
Совсем другое дело – токи такой величины легко сможет контролировать практически любой электросчетчик. Подбирая трансформаторы с тем или иным коэффициентом трансформации, вы легко можете вести учет расхода электроэнергии практически любой мощности обычными электросчетчиками.
Как подключить ТТ к трехфазной сети
А теперь о схеме включения счетчика через ТТ. Конечно, она будет несколько сложнее конструкции прямого включения, но не настолько, чтобы в ней не разобрался человек, имеющий представление о простейших электрических цепях.
Схема подключения трехфазного счетчика через трансформаторы тока
В этой схеме электросчетчик подключен не в разрыв сетевых проводов, а ко вторичным обмоткам ТТ, которые обозначены как И1, И2. А в этот самый разрыв подключены первичные обмотки трансформатора (на схеме Л1, Л2).
Прежде чем взяться за сборку вышеприведенной схемы, необходимо четко разобраться в нескольких вопросах. От правильного их решения будет зависеть не только безопасная и долговременная работа схемы, но и ее работоспособность. Вот основные из них:
- Правильный выбор сечения монтажных проводов.
- Фазировка катушек ТТ.
Если вы не врезаете ТТ непосредственно в линию, то соединяющие провода первичной обмотки должны иметь то же сечение, что и проводка линии. Проводники, соединяющие ТТ и счетчик, конечно, могут быть тоньше, но они должны уверенно выдерживать ток, обозначенный на корпусе электросчетчика.
На фазировку (правильное подключение концов катушек) ТТ нужно обратить особое внимание. В противном случае прибор учета либо не заработает, либо будет врать, а то и закрутится в другую сторону, если он двунаправленный. Как разобраться с фазировкой? В этом поможет рисунок ниже:
Как разобраться с фазировкой? В этом поможет рисунок ниже:
Набор токовых трансформаторов для трехфазной сети
Даже если ваши трансформаторы не совсем похожи на приведенные, особой разницы нет – в любом случае все выводы обмоток маркируются единообразно. Контакты первичной, силовой обмотки отличить несложно – они гораздо мощнее контактов вторичной и расположены с противоположных сторон изделия. Маркируются они Л1 и Л2. Выводы обмотки 2, подключаемой к электросчетчику, в этом варианте исполнения закрыты прозрачной крышкой и имеют обозначение И1, И2. Если взглянуть на схему подключения счетчика, то можно увидеть, что катушки не только должны быть подключены каждая на свое место, но и правильно сфазированы:
- Л1 – на ввод питающей линии;
- Л2 – выход на нагрузку;
- И1 – на ввод счетчика;
- И2 – выход счетчика.
Что касается расцветки корпуса ТТ, она условна и служит только для удобства монтажа. Фактически все три трансформатора абсолютно идентичны.
Как быть, если в вашем доме однофазная сеть, но ток потребления слишком велик для электросчетчика? Такая ситуация достаточно редка, но она случается. И здесь выручит токовый трансформатор, причем всего один. Как подключить однофазный электросчетчик через ТТ понятно из рисунка ниже:
Схема подключения однофазного электросчетчика с трансформатором тока
ТОП-3 однофазных электросчетчиков
Подобные устройства используются в сетях, где напряжение составляет 220 В, причем ежедневно потребляемое электричество должно составлять не более 10 кВт. Конструкция таких счетчиков проста, а показания с них очень удобно снимать.
No3. TDM Electric «Марс» SQ1105-0004
TDM Electric «Марс» SQ1105-0004 Модель отличается тем, что ее корпус выполнен из качественного негорючего пластика, что в разы повышает безопасность эксплуатации. Нагрузка на устройство должна составлять не более 100 А. Прибор оснащен особым предохранителем и тремя пломбами, благодаря чему гарантируются защита от воздействия извне и отличная точность показаний. Напряжение должно составлять не более 230 В.
Плюсы
- компактность;
- высокая прочность корпуса;
- светодиодные индикаторы;
- стабильная работа.
Минусы
отсутствие пыле- и влагозащиты.
No2. Энрон «Топаз» 101-5(60)1-Ш2Р1Э
Энрон «Топаз» 101-5(60)1-Ш2Р1Э В этом приборе пломбы расположены на передней панели, что позволяет легко контролировать их целостность. Есть прозрачная крышка, что облегчает контроль корректности подключения. Значение тока не должно превышать 60 А. Модель невосприимчива к электромагнитному воздействию, а потому повлиять на ее работу извне невозможно.
Плюсы
- высокая надежность;
- промежуток между проверками достаточно большой;
- простота монтажа;
- высокая прочность корпуса.
Минусы
отсутствие креплений.
No1. Микрон СЭБ-1ТМ.02М.07
Микрон СЭБ-1ТМ.02М.07 Модель характеризуется, прежде всего, высокой надежностью и опцией архивирования. Что стало возможным благодаря энергонезависимой памяти и тому, что в конструкции нет алюминиевых электролитических конденсаторов. При предельно допустимом токе в 80 А устройство способно без проблем работать при температуре от -40 до +50 градусов. Можно вести журнал учета сразу по 4-м тарифам (за год).
Плюсы
- гибкость настроек;
- архивирование учета;
- присутствие в конструкции часов;
- длительный эксплуатационный срок.
Минусы
достаточно высокая стоимость.
Определение вторичных токов нагрузки в цепях трансформаторов напряжения
В соответствии с токораспределением, приведенным на рис.1 (а) İав = İо + İса, отсюда İа = İав – İса. Если бы ток İав был равен по величине току İса, то векторная разность этих токов была бы равна √3 İса (см. рис.1). Прибавив к вектору √3 İса разницу в величинах токов İав и İса (см. рис. 1 г), получим некоторый вектор İa, величина которого определяется по выражению: İa = √3 İса + (İав — İса) (2)
Приняв İa = Iа, можно приближенно по выражению (2) определить величину тока Iа. Аналогично можно определить тока Iв и Iс.
Заменяя в выражении (2) Iа на Iф – ток в любой фазе, Iав на Iмакс – больший на двух токов междуфазных нагрузок -, Iса на Iмин – меньший из этих двух токов -, получим общее выражение для определения тока нагрузки любой фазы трансформатора. Iф = √3 Iмин + (Iмакс. – Iмин.) = Iмакс. + 1,73*Iмин – Iмин или Iф = Iмакс. + 0,73*Iмин. (3)