Феррорезонансный стабилизатор напряжения: достоинства и недостатки

Стабилизация напряжения бытовой сети

Стремления обеспечить стабилизированное напряжение бытовой сети – явление очевидное. Такой подход обеспечивает сохранность эксплуатируемой техники, зачастую дорогостоящей, постоянно необходимой в хозяйстве. Да и в целом, фактор стабилизации – это залог повышенной безопасности эксплуатации электрических сетей.

Для бытовых целей чаще всего приобретают стабилизатор для газового котла, автоматика которого требует подключения к электропитанию, для холодильника, насосного оборудования, сплит систем и подобных потребителей.

Промышленная конструкция стабилизатора сетевого напряжения, которую несложно приобрести на рынке. Ассортимент подобного оборудования огромен, но всегда остаётся возможность сделать собственную конструкцию

Решить подобную задачу можно разными способами, самый простой из которых – купить мощный стабилизатор напряжения, изготовленный промышленным способом.

Предложений стабилизаторов напряжения на коммерческом рынке масса. Однако нередко возможности приобретения ограничиваются стоимостью устройств или другими моментами. Соответственно, альтернативой покупке становится сборка стабилизатора напряжения своими руками из доступных электронных компонентов.

При условии обладания соответствующими навыками и знаниями электромонтажа, теории электротехники (электроники), разводки схем и пайки элементов самодельный стабилизатор напряжения можно реализовать и успешно применять на практике. Такие примеры есть.

Примерно так может выглядеть оборудование стабилизации, изготовленное своими руками из доступных и недорогих радиодеталей. Шасси и корпус можно подобрать от старого промышленного оборудования (например, от осциллографа)

Принцип работы

Основу феррорезонансного стабилизатора составляет пара дросселей, на один из них приходит напряжение, а с помощью другого происходит формирование эталонного значения.

Также значимой составляющей являются конденсаторы, которые тоже принимают участие в преобразовании напряжения. Следует учитывать тот факт, что на устройство не должны попадать прямые солнечные лучи, иначе срок его службы значительно сократиться.

Система охлаждения установленная в стабилизаторе пассивная и представлена небольшими радиаторами и корпусов. Но этого вполне достаточно, чтобы прибор не перегревался во время работы.

Интервал стабилизации может быть самым различным, чем он выше, тем дороже будет стоимость стабилизатора. Но стоит учитывать тот факт, что чем меньше нагрузка, тем больше становится интервал стабилизации. В паспорте он указан для пиковой нагрузки.

Существуют модели одно-, двух- и трехфазные, с гальванической развязкой или без таковой. Стабилизаторы могут функционировать при различном входном и выходном напряжении, с частотой 50, 60 или 400 Гц.

Мощность может варьироваться в диапазоне от нескольких ватт, до нескольких десятков киловатт. Могут быть выполнены в виде напольного, настенного или настольного агрегата.

Стабилизаторы напряжения

Феррорезонансные стабилизаторы напряжения. Были разработаны в середине 60 годов прошлого века, их принцип работы основано на использовании явления магнитного насыщения ферромагнитных сердечников трансформаторов или дросселей. Применялись такие устройства для регулировки напряжения питания бытовой техники (телевизор, радиоприёмник, холодильник и т.п.).

Феррорезонансный стабилизатор напряжения

Их преимущество заключается в высокой точности 1-3% и быстрой (для того времени) скорость регулирования. Недостаток — повышенный уровень шума и зависимость качества стабилизации от величины нагрузки. Современные устройства лишены этих недостатков, но стоимость их равна или выше стоимости ИБП (Источника Бесперебойного Питания) на такую же мощность, вследствие чего они широкого распространения в качестве бытовых не получили.

Электромеханические стабилизаторы напряжения. В 60-80-е годы прошлого века для регулирования напряжения применялись автотрансформаторы с ручной корректировкой (ЛАТР), вследствие чего приходилось постоянно следить за вольтметром (стрелочный или светящаяся линейка) и, при необходимости, вручную крутить ползунок с токосъёмными щётками. В настоящее время принцип работы автоматизирован с помощью электродвигателя с редуктором (сервопривода).

Электромеханический стабилизатор напряжения

Единственные достоинства электромеханических стабилизаторов напряжения — низкая цена и хорошая точность регулировки 2-3%. Недостатков много — низкая скорость регулирования из-за инерционности двигателя и повышенный уровень шума: шумит электродвигатель и редуктор, и практически постоянно, т.к. отслеживаются изменения с шагом 2-4 вольта. Плюс к этому, добавляется повышенный износ механический частей и недолгий общий ресурс работы устройства в целом, что подтверждается сроком гарантии всего в 1 год. Также при резком увеличении значений сети часто кратковременно отключается нагрузка, т.к. стабилизатор не успевает погасить этот скачок, и напряжение на ней превышает максимально допустимое значение.

Вследствие всего вышесказанного получили распространение как дешёвые стабилизаторы для питания недорогой домашней электротехники.

Электронные стабилизаторы напряжения. Наиболее широкий класс устройств ступенчатого регулирования, обеспечивающих исключительное постоянство электропитания нагрузки с заданной точностью в широких пределах изменения входной сети. Принцип работы основан на автоматическом переключении секций автотрансформатора с помощью силовых ключей (реле, тиристоры, симисторы).

Структурная схема электронного стабилизатора напряжения

К их достоинствам можно отнести: высокое быстродействие, очень широкий входной диапазон, отсутствие искажения формы напряжения, высокий КПД, низкий уровень шума (только от вентиляторов охлаждения). Точность стабилизации определяется количеством ступеней регулирования и, в зависимости от модели, может составлять от 5 до 0.5%, а некоторые модели даже имеют возможность коррекции в пределах 210-230 вольт для лучшей адаптации к импортному оборудованию. Необходимо особо отметить высокую надёжность 3-х фазных конфигураций, где каждую фазу в отдельности регулирует независимый однофазный блок.

Электронный стабилизатор напряжения

Несмотря на высокую стоимость, электронные стабилизаторы напряжения — это оптимальное соотношение цена/качество, и они заслуженно нашли наибольшее распространение на рынке высококачественных электроприборов.

Инверторные стабилизаторы напряжения. Самый молодой тип регуляторов, начал выпускаться во второй половине 10-х годов нашего столетия. Как и ИБП (источник бесперебойного питания), принцип работы основан на двойном преобразовании сетевого напряжения: сначала оно выпрямляется а затем заново преобразуется в переменное. Их достоинства, в общем, такие же, как и у электронных стабилизаторов, но есть два существенных положительных отличия. Во-первых, они не содержат трансформаторов и поэтому имеют небольшой вес и габариты, а во-вторых, они ещё стабилизируют и частоту тока! К недостаткам можно отнести то, что в трёхфазных моделях при неполадках в любом контуре регулирования фазы два остальных тоже отключаются.

Инверторный стабилизатор напряжения

В общем, у инверторных стабилизаторов напряжения есть определённое будущее и существенный сектор применения

Классификация

Антирезонансные агрегаты классифицируют в основном по характеристикам напряжения, на которое они рассчитаны. Различают следующие разновидности указанного оборудования:

  • с напряжением в 110 кВ – предусматривают глухозаземленную нейтраль. При этом исключается воздействие феррорезонансных процессов для нулевого канала. Но если отдельный участок сети потеряет нейтраль, негативные факторы могут повлиять на работу агрегата, с возрастанием напряжения до 2,5 раз. Чтобы исключить выход оборудования из строя, необходимо увеличить активное сопротивление на активном входе;
  • с напряжением в 220, 330 и 500 кВ – предусматривают использование конденсаторов, компенсирующих негативное влияние перепадов фазного напряжения.

Отдельно следует сказать о трансформаторах типа НАМИ. Данная аббревиатура расшифровывается так:

  • Н – указывает, что агрегат изменяет напряжение;
  • А – антирезонансного типа;
  • М – с масляным охлаждением;
  • И – изоляционно-контрольный.

Производятся следующие устройства, отличающиеся индексом, следующим через дефис после указанной аббревиатуры:

  • 10 – базовая модель;
  • 10-95 – рассчитанный на включение в электрическую сеть с величиной частоты в 50 Гц. Напряжение катушки на входе составляет 10 или 6 кВ, на выходе – 0,1. Для исполнения заземления используется конструкционная сталь, катушки с сердечниками помещаются в масляную ёмкость;
  • 10-95 УХЛ-2 – в дополнение к основной функции, предусматривающей передачу сигнала к управляющим блокам, в качестве измерительных или защитных систем, могут выполнять роль защитных элементов для электрических приборов при критичном росте напряжения.

Перечисленные устройства выполняются с различными габаритными размерами и могут предусматривать некоторые конструктивные различия, указанные в паспортной документации от изготовителя.

Феррорезонансные перенапряжения в сетях с изолированной нейтралью

Рис. 2.7. Схема замещения для анализа феррорезонансных перенапряжений в сети с изолированной нейтралью Феррорезонансные перенапряжения представляют серьезную опасность для электроустановок сетей 6-35 кВ. Эта опасность возрастает под влиянием следующих факторов: в связи с искусственным поддерживанием повышенного значения напряжения в сети в целях обеспечения компенсации потери напряжения; с увеличением количества сезонных трансформаторных нагрузок, а следовательно слабо нагруженных трансформаторов. Использование в магнитной системе трансформаторов 6-35 кВ материалов с улучшенными характеристиками приводит к увеличению индуктивности и шунтирующей емкости трансформаторов, а следовательно, вероятности возникновения феррорезонанса.

В сетях с изолированной нейтралью феррорезонанс может развиваться в полнофазных режимах работы сети при наличии индуктивности с насыщающимся сердечником, включенной параллельно фазной емкости сети на землю. Такой индуктивностью часто оказывается обмотка трансформатора напряжения. Однако наиболее вероятной схемой для развития феррорезонанса являются неполнофазные режимы. В зависимости от параметров резонансных контуров феррорезонансные перенапряжения могут возникать на основной частоте, высших гармониках и субгармониках. Как показывают результаты многочисленных исследований и опыт эксплуатации промышленных сетей, значительные феррорезонансные перенапряжения возникают главным образом на промышленной частоте.

В сетях 6-10 кВ наблюдались случаи очень быстрого повреждения трансформаторов напряжения (ТН) контроля изоляции. Через доли минуты после возникновения однофазного замыкания сети на землю ТН начинал дымить и выходил из строя. Такие случаи наблюдаются при обрывах и падениях проводов и других несимметричных режимах в сети. Вскрытие поврежденных ТН выявляло обугливание изоляции обмотки высокого напряжения одной из фаз. Такие повреждения возможны только при четырехкратном непрерывном перевозбуждении трансформатора, что характерно для феррорезонансных процессов.

В сетях 6-10 кВ с изолированной нейтралью создаются условия для возникновения феррорезонанса между емкостью сети и индуктивностью ненагруженных трансформаторов различного вида.

Рис. 2.8. Схемы трех вариантов обрыва проводов, когда потребительский трансформатор 6-10/0,4 кВ оказывается в режиме феррорезонансного преобразователя: а — обрыв фазы А и ее заземление со стороны потребителя; б — обрыв фазы А без заземления провода; в — обрыв фазы А и ее заземление со стороны источника

Индуктивность питающего сеть трансформатора зашунтирована сетью высшего напряжения (35 или 110 кВ) и не может вступать в феррорезонанс с емкостью сети 6-10 кВ. Трансформаторы напряжения маломощны и не могут создавать феррорезонанс с большими емкостями разветвленной сети. Резонировать с емкостями линий в разветвленной сети с током замыкания на землю в несколько ампер ( С = 0,5-5 мкФ ) могут только силовые понижающие трансформаторы 6-10/0,4 кВ мощностью до 630-1000 кВА. Они имеют трехстержневой магнитопровод и изолированную нейтраль обмотки высокого напряжения.

Однофазное питание силовых трансформаторов в сети 6-10 кВ может быть при обрывах проводов, перегорании плавких вставок в предохранителях, неполнофазном включении разъединителей и выключателей, а образующиеся при этом варианты схем часто являются разновидностью феррорезонансного преобразователя.

Uэ=1,5Uф – наиболее распространенный случай в сетях с изолированной нейтралью, так что разрядники и ОПН в этом случае не помогут. Поэтому либо вообще не допускать такого случая (программные мероприятия), либо добавить активное сопротивление. Реле нужно в тех случаях, когда нельзя работать без разомкнутого трансформатора.

В настоящее время добавляют в нейтраль резистор, и характеристика принимает вид (рис. 2.9):

Рис.2.9. Влияние активного сопротивления на феррорезонанс

Вопросы для самопроверки:

1. Что означает понятие «феррорезонанс»?

2. Назовите необходимые и достаточные условия возникновения феррорезонансных перенапряжений.

Задание на самостоятельную работу.

1. С помощью графоаналитического метода найдите максимальное значение феррорезонансных перенапряжений в сети с изолированной нейтралью при обрыве провода с падением на землю.

2. С помощью графоаналитического метода найдите максимальное значение феррорезонансных перенапряжений в сети с заземленной нейтралью при обрыве двух фаз без замыкания на землю.

Феррорезонанс в трансформаторе напряжения: принцип работы стабилизатора напряжения

Феррорезонансный стабилизатор напряжения уже давно активно применяется не только в быту, но и в промышленности. Устройства этого класса позволяют выровнять напряжение переменного типа. В основе принципа функционирования заключается эффект электромагнитного резонанса в колебательном контуре. Такие нормализаторы обладают массой достоинств, но также имеют и свои недостатки.

Феррорезонансные явления в электрических сетях

Основные факторы, которые порождают феррорезонансные явления в электрических сетях – это элементы ёмкостного и индуктивного типа. Они способны формировать колебательные контуры в периоды переключения. Этот эффект особо заметен в трансформаторах силового типа, линейного вольтодобавочного, шунтирующих контурах и в аналогичных устройствах, которые оборудуются массивной обмоткой.

Данное явление бывает 2 типов: резонанс токов и напряжения.

Феррорезонанс напряжений возможен, когда в сети имеется индуктивность, характеризующаяся нелинейным вольт-амперным свойством. Данная характеристика свойственна катушкам индуктивности, где сердечники производятся из ферромагнитных компонентов. Особенно это касается выпрямителей линейки НКФ. Такое негативное явление обуславливается небольшим показателем сопротивлений омического и индуктивного типов по отношению к силовым трансформаторам.

Феррорезонанс в трансформаторе напряжения

Когда трансформатор напряжения подключается к сети, в ней формируются последовательно совмещённые LC-цепи, являющие собой контур резонансного типа. При последовательном подключении индуктивного элемента с нелинейным вольт-амперным свойством к элементу ёмкостного типа напряжение в этой зоне цепи характеризуется как активно-индуктивное.

По окончании определённого временного периода значение напряжения на индуктивном элементе становится пиковым, магнитопровод питается, а напряжение на компоненте ёмкостного типа продолжает расти. Феррорезонанс в трансформаторе напряжения наступает, когда напряжение индуктивности и ёмкостного элемента становится равнозначным.

Быстрый переход приложенного напряжения из активно-индуктивного типа в активно-ёмкостной именуется как “опрокидывание фазы”. Такой эффект опасен для электроприборов.

Феррорезонансные стабилизаторы

Феррезонансный стабилизатор

Феррорезонансные выпрямители не оборудуются встроенным вольтметром, вследствие чего сложно замерять выходной показатель напряжения сети. Отрегулировать величину напряжения собственноручно не получится. Стабилизаторы феррорезонансного типа частично искажают реальные показания, величина погрешности составляет до 12%.

Тем, кто долго пользуется такими устройствами, необходимо помнить, что они способны излучать магнитное поле, которое может нарушить правильное функционирование бытовой электротехники. Стабилизаторы такого класса настраиваются в заводских условиях, никаких дополнительных настроек в быту они не требуют.

Влияние стабилизатора на технику

Феррорезонансный стабилизатор напряжения, принцип работы которого непрост, воздействует на бытовую технику следующим образом:

  • Радиоприёмник – чувствительность приёма сигнала может быть уменьшена, показатель выходной мощности существенно снижается.
  • Музыкальный центр – выходная мощность такой техники может существенно снизиться, стирание и запись новых дисков значительно ухудшаются.
  • Телевизор – при подсоединении к стабилизатору можно наблюдать значительное снижение качества картинки на ТВ, отдельные цвета передаются неправильно.

Электрическая схема современных нормализаторов феррорезонансного типа улучшена, что позволяет им выдерживать большие нагрузки. Такие устройства могут гарантировать точную регулировку сетевого напряжения. Процедура корректировки выполняется трансформатором.

Режимы эксплуатации

Эксплуатационные режимы стабилизаторов зависят от ряда факторов. Прямое влияние имеет показатель мощности и класс устройства. Мощностные характеристики прибора могут быть разными, выбирать их надо с учётом типа подсоединяемой электротехники.

Режимы функционирования выпрямителя зависят от таких типов нагрузки:

  • индуктивная;
  • активная;
  • ёмкостная.

Активная нагрузка в чистой форме наблюдается крайне редко. Она необходима только в тех цепях, где переменное значение устройства не имеет ограничений. Нагрузки ёмкостного типа могут применяться только для тех выпрямителей, которые обладают невысокой мощностью.

Феррорезонансный стабилизатор

Феррорезонансные стабилизаторы по схеме рис. 9.12 а с насыщенным лросселем применяются редко. В этом трансформаторе сечения стержней магнитопровода выбирают таким образом, чтобы при минимальном входном напряжении стержень 2 был магнитонасыщен, а стержень 1 — ненасытен.

Феррорезонансные стабилизаторы поддерживают напряжение на выходе с большой степенью точности ( до 0 5 %), но очень чувствительны к изменению частоты.

Феррорезонансные стабилизаторы применяются для стабилизации переменного напряжения. Эти стабилизаторы поддерживают напряжение на выходе с большой точностью ( до 0 5 %), но очень чувствительны к изменению частоты питающего напряжения. Недостатками феррорезонанс-ных стабилизаторов являются: искажение формы напряжения сети, зависимость режима от потребляемой мощности и сильное поле рассеяния, которое может создавать наводки на усилители и измерительную аппаратуру.

Феррорезонансный стабилизатор ( ФРС) представляет собой устройство, принцип работы которого основан на использовании резонансных явлений и нелинейных свойств насыщенных стальных магнитопроводов. Существует большое количество типов феррорезонансных стабилизаторов, которые отличаются один от другого как конструкцией, такчи электрической схемой.

Феррорезонансный стабилизатор работает следующим образом. При повышении входного напряжения возрастает и магнитный поток в среднем стержне. В связи с тем что сталь крайнего стержня с меньшим сечением уже насыщена, то магнитный поток в нем возрастает незначительно и выходное напряжение стабилизатора мало изменяется. При этом избыток потока замыкается через магнитный шунт и частично рассеивается через воздух. Стабильность выходного напряжения повышается еще больше благодаря компенсационной обмотке WK, так включенной последовательно с обмоткой и2, что ее напряжение вычитается из напряжения вторичной обмотки.

Феррорезонансный стабилизатор состоит из насыщенного Тр и ненасыщенного Тр2 трансформаторов и резонансной емкости С. Ненасыщенный трансформатор с воздушным зазором имеет линейную характеристику и работает из-за наличия воздушного зазора на ненасыщенном участке кривой намагничивания. Ненасыщенный трансформатор имеет первичную w и вторичную w2 об — мотки, насыщенный трансформатор — первичную w, резонансную zwp и вторичную w2 обмотки, Параллельно включенные конденсатор и резонансная обмотка представляют собой нелинейное звено стабилизатора. Вторичные обмотки насыщенного и ненасыщенного трансформаторов соединяются в несимметричную звезду и подключаются к трехфазной мостовой схеме выпрямления. При изменении напряжения сети и тока нагрузки происходит перераспределение напряжения между первичными, а следовательно, и вторичными обмотками трансформаторов и изменение угла сдвига фаз между ними. Благодаря этому напряжение на выходе моста остается скомпенсированным.

Феррорезонансные стабилизаторы используют нелинейность кривой намагничивания стали и конструктивно похожи на обычные трансформаторы напряжения. Отличие от обычных трансформаторов заключается в том, что первичная обмотка / ( фиг.

Феррорезонансный стабилизатор ( рис. 10.23, б) состоит из линейной емкости и нелинейной индуктивности.

Феррорезонансные стабилизаторы ( рис. 14, г) используются для стабилизации переменного напряжения. Поэтому обычно они включаются между источником переменного напряжения и выпрямителем. При таком использовании феррорезонансных стабилизаторов повышается стабильность не только выпрямленного напряжения, но и напряжения накала, которое снимается с понижающей ( накальной) обмотки силового трансформатора выпрямителя.

Феррорезонансный стабилизатор ( рис. 14, г) состоит из насыщенного автотрансформатора AT и ненасыщенного дросселя Др с двумя обмотками: основной WOCKK компенсационной WK. Обмотка насыщенного автотрансформатора с конденсатором С образует параллельный колебательный контур, настроенный на частоту, близкую к частоте сети. Расчет схемы сводится к определению основных конструктивных параметров автотрансформатора и дросселя, а также к выбору величины конденсатора феррорезонансного контура.

Явление — феррорезонанс

Явление феррорезонанса подробно рассматривается во всех курсах теоретических основ электротехники. Анализ их проводится методом эквивалентных синусоид, и поэтому полученные результаты достаточно близко совпадают с результатами опыта только при значениях индукции в магнитопроводе нелинейных индуктивных элементов несколько выше колена характеристики намагничивания. При таких условиях содержание высших гармонических в токах и напряжениях относительно невелико и неучет их не приводит к существенным погрешностям расчета.  

Вольтамперные характеристики последовательного феррорезонансного контура.  

Явление феррорезонанса широко используется в технике. Оно позволяет создать бесконтактные реле, которые, в отличие от рассмотренных выше, не нуждаются ни в обмотках обратной связи, ни и выпрямителях.  

Чем отличается явление феррорезонанса от явления резонанса в линейных цепях.  

Феррорезонанс напряжений.  

При анализе явления феррорезонанса в целях упрощения пользуются эквивалентными синусоидами напряжения и тока в катушке.  

Для пояснения явления феррорезонанса напряжений будем пренебрегать всеми видами потерь энергии в цени, а также высшими гармониками напряжений и тока.  

Схема включения параллельного стабилизатора.| Упрощенная электрическая схема замещения генератора при наличии параллельного стабилизатора.  

Работа схемы основана на явлении феррорезонанса.  

Это явление также относится к явлению феррорезонанса, причем в рассматриваемом случае мы имеем дело с феррорезонансом в параллельной цепи.  

Для создания бесконтактных реле используется также явление феррорезонанса. В схемах ферроре-зонансных реле нет обмоток обратной связи и выпрямителей, поэтому они более надежны, особенно на высоких частотах ( несколько мегагерц), а их быстродействие позволяет делать сотни тысяч переключений в секунду.  

Феррорезонансный стабилизатор напряжения.  

Феррорезонансные стабилизаторы могут быть основаны на явлениях феррорезонанса напряжений и токов.  

При работе трансформатора ТН на холостом ходу возникают явления феррорезонанса, характеризующиеся скачкообразными изменениями тока. Это приводит к резким повышениям напряжения и искажению формы кривой вторичного напряжения ( на зажимах а — х и ад — хя), которая в этом случае существенно отличается от синусоиды.  

При этом в цепях фильтра тока обратной последовательности отсутствуют явления феррорезонанса.  

Расчет мощности

Выше неоднократно отмечалось, что при выборе стабилизатор важно учесть такой критерий, как мощность. Для получения стабильных 220В на выходе требуется зафиксировать два ключевых показателя — суммарную мощность электрических приборов, а также напряжение в сети

Для получения стабильных 220В на выходе требуется зафиксировать два ключевых показателя — суммарную мощность электрических приборов, а также напряжение в сети.

ПОПУЛЯРНОЕ У ЧИТАТЕЛЕЙ: Розетки в пол – назначение, виды, правила монтажа

Алгоритм действий имеет следующий вид:

Замеряем U в часы пиковых нагрузок (по вечерам), для этого можно воспользоваться мультиметром.
Вычисляем общую мощность имеющегося оборудования в доме, в квартире или на даче, учитывая пусковые токи. Номинальный параметр можно узнать из паспорта, посмотреть на самом приборе или в инструкции

При расчете важно учесть постоянно работающее оборудование, такое как холодильник, ТВ, бойлер и другое. Нельзя забывать и за другую технику, которая включается время от времени — фен, электрический чайник и другое

Если речь идет о частном доме или даче, стоит учесть уличное освещение, полив и привод открытия (закрытия) ворот с помощью электромагнитного замка
Как уже отмечалось, важно брать во внимание и пусковые токи, которые в 3-6 раз могут превышать номинальные. Такая особенность характерна для водяных насосов, сплит систем, холодильника и других аппаратов.

Итоговая мощность выбранного стабилизатора должна быть на 20% больше расчетного параметра. Это делается для того, чтобы в будущем иметь возможность подключить дополнительные приборы.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий