Устройство и принцип работы однофазного трансформатора

Виды конструкций однофазных трансформаторов

Конструкция однофазного трансформатора может быть выполнены стержневого типа так и броневого или тороидального.

конструкция стержневого трансформатора

Однофазный двух обмоточный трансформатор стержневого типа, представляет собой два стержня на которые располагаются обе обмотки. Объединяет эти стрежни, стальное ярмо, на котором и происходит соединение магнитных потоков двух обмоток.

Тип однофазного броневого трансформатора представляет собой один стержень (сердечник), который как бы бронируется, защищается с обеих сторон ярмом от внешних механических воздействий. Магнитный поток проходящий по ярму броневого меньше в два раз чем в стержне, поэтому ярма делают в два раза меньше, уменьшая тем самым габаритные размеры и вес.

Сборка трансформатора

Собирают магнитопроводы трансформаторов встык или в нахлест.

1- пластины Ш-образного профиля, 2 — пластины прямоугольного профиля, 3 — стержневые шпильки

Сборка внахлест пластины сердечника выполняют одна за другой укладывая их плотно в разных точках разреза полос. Монтаж и демонтаж такого трансформатора более трудоемок, но зато это позволяет сильно уменьшить магнитное сопротивление, снижает реактивные потери на вихревые токи и нагрев стали.

ленточный магнитопровод

Существуют также и ленточные магнитопроводы которые делают из холоднокатаной стали как стержневого типа так броневого типа. Магнитная проницаемость трансформаторной холоднокатаной стали больше чем у горячекатаной, но только при направлении которая совпадает с направлением проката стали. В связи с этим такие трансформаторы собирают внахлестку, уже из лент разной длины (пакеты) и затем соединяют вместе предварительно пропитывая для изоляции жаростойким лаком. Особенность такого трансформаторов, что они обязательно требуют установки изоляционной прокладки на месте стыка двух магнитопроводов или изоляцией лаком. Это предотвращает замыкания пластин, в результате чего не возникает чрезмерный нагрев сердечника трансформатора токами вихревыми. Такой нагрев может приводить к плавлению стали в одну сплошную массу.

Мощные силовые трансформаторы часто делают только стержневыми так у них проще выполнить изоляцию обмоток высшего напряжения от низшего. Трансформаторы малой мощности, сетевые трансформаторы делаю из броневого магнитопровода. Обмотки у броневых трансформаторов располагаются на одном стержне, а не отдельно одна от другой. Как правило, первичная обмотка располагается ближе к сердечнику, а вторичная мотается поверх первой. Токи первичной и вторичной обмотки маломощного трансформатора невелики, так что усиленной изоляцией можно пренебречь.

Устройство и принцип действия

Чтобы понять, как работает такой прибор необходимо изучить его комплектацию. В устройство силового трансформатора включены как основные части, так и дополнительные детали.

Устройство трансформатора

К первым относятся:

  • Магнитопровод;
  • 2 или 3 обмотки;
  • Расширитель;
  • Корпус;
  • Входы;
  • Изоляционные элементы.

Магнитопровод представлен как система, выполненная из электромеханической стали. Эта часть устройства силового трансформатора служит основой для крепления различных деталей. Обмотки – это часть электроцепи. Они изготавливаются из провода и изоляции. Кабель может быть медном или алюминиевым. В конструктивном плане обмотки – это последовательные катушки. Их фазы допускается соединять двумя способами:

  • в виде треугольника;
  • звездой.

Магнитопровод с обмотками находится в баке с минеральным маслом. Эта конструкция называется силовым трансформатором. Она может оснащаться радиатором, предназначенным для отвода тепла. Некоторые модели таких устройств имеют в своей конструкции также защитные системы. Обычно оборудование этого класса устанавливаются на улице.

Принцип действия силового трансформатора базируется на физическом законе электромагнитной индукции. Он заключается в следующем. Подсоединение обмотки устройства к электросети приводит к образованию магнитного потока. Он индуцирует ЭДС в другой обмотке прибора. Такой принцип работы объясняется наличием магнитной связи в приборе.

Расчет тороидального трансформатора

Коротит проводка — причины и способы устранения проблемы

Такая конструкция трансформаторов используется в радиоэлектронной аппаратуре, они обладают меньшими габаритами, весом, а также повышенным значением КПД. За счёт применения ферритового стержня помехи практически отсутствует, это даёт возможность не экранировать данные устройства.

Простой расчет тороидального трансформатора состоит из 5 пунктов:

  • Определение мощность вторичной обмотки P=Uн*Iн;
  • Определение габаритной мощности трансформатора Рг=Р/КПД. Величина его КПД примерно 90-95%;
  • Площадь сечения сердечника и его размеры

Определение количества витков на вольт и соответственно количества витков для необходимой величины напряжения.

Расчёт тока в каждой обмотке и выбор диаметра проводника делается аналогично, как и в силовых однофазных трансформаторах, описанных выше.

Общая конструкция и принцип работы трансформатора

Конструктивно трансформатор состоит из следующих основных частей:

  1. Замкнутый сердечник из ферромагнитного материала.
  2. Обмотки.

Обмотки могут быть намотаны на жестком каркасе или иметь бескаркасное исполнение. В качестве сердечников трансформаторов напряжения промышленной частоты используется специальным образом обработанная сталь. В некоторых случаях встречаются устройства без сердечника, но они используются только в области высокочастотной схемотехники и в рамках данной темы рассматриваться не будут.

Принцип действия рассматриваемой конструкции заключается в следующем:

  1. При подключении первичной обмотки к источнику переменного напряжения она формирует переменное электромагнитное поле.
  2. Под воздействием данного поля в сердечнике формируется магнитное поля.
  3. Магнитное поле сердечника, в силу электромагнитной индукции, создает во всех обмотках ЭДС индукции.

ЭДС индукции создается, в том числе, в первичной обмотке. Ее направление противоположно подключенному напряжению, поэтому они взаимно компенсируются и ток через обмотку при отсутствии нагрузки равен нулю. Соответственно, потребляемая мощность при отсутствии нагрузки равна нулю.

Режимы работы

Характеристики трансформаторов определяются условиями работы, где ключевая роль отводится сопротивлению нагрузки. За основу берутся следующие режимы:

  1. Холостого хода. Выводы вторичной цепи находятся в разомкнутом состоянии, сопротивление нагрузки приравнивается бесконечности. Измерения тока намагничивания, протекающего в первичной обмотке, даёт возможность подсчитать КПД трансформатора. При помощи этого режима вычисляется коэффициент трансформации, а также потери в сердечнике;
  2. Под нагрузкой (рабочий). Вторичная цепь нагружается определённым сопротивлением. Параметры протекающего по ней тока напрямую связаны с соотношением витков катушек.
  3. Короткого замыкания. Концы вторичной обмотки закорочены, сопротивление нагрузки равно нулю. Режим информирует о потерях, которые вызываются нагревом обмоток, что на профессиональном языке значится «потерями в меди». Режим короткого замыкания

Информация о поведении трансформатора в различных режимах получаются опытным путём с использованием схем замещения.

Холостой ход (ХХ)

Такой порядок работы реализуется от размыкания вторичной сети, после чего в ней прекращается течение электротока. В первичной обмотке течет ток холостого хода, составной его элемент — ток намагничивающий.

Когда вторичный ток равен нулю, электродвижущая сила индукции в первичной обмотке целиком возмещает напряжение питающего источника, а потому при пропаже нагрузочных токов, идущий сквозь первичную обмотку ток по своему значению соответствует току намагничивающему.

Функциональное назначение работы трансформаторов вхолостую — определение их важнейших параметров:

  • КПД;
  • показателя трансформирования;
  • потерь в магнитопроводе.

Режим нагрузки

Режим характеризуется функционированием устройства при подаче напряжения на вводы первичной цепи и подключении нагрузки во вторичной. Нагружающий ток идет по «вторичке», а в первичной — суммарный ток нагрузки и ток холостой работы. Этот режим функционирования считается для прибора преобладающим.

На вопрос, как работает трансформатор в основном режиме, отвечает основной закон ЭДС индукции. Принцип таков: подача нагрузки к вторичной обмотке вызывает образование во вторичной цепи магнитного потока, образующего в сердечнике нагружающий электроток. Направлен он в сторону, противоположную его течению, создающегося первичной обмоткой. В первичной цепи паритет электродвижущих сил поставщика электроэнергии и индукции не соблюдается, в первичной обмотке осуществляется повышение электротока до того времени, пока магнитный поток не вернется к своему исходному значению.

Короткое замыкание (КЗ)

Переход прибора в этот режим осуществляется при кратковременном замыкании вторичной цепи. Короткое замыкание — особый тип нагрузки, прилагаемая нагрузка — сопротивление вторичной обмотки — единственная.

Принцип работы трансформатора в режиме КЗ таков: к первичной обмотке приходит незначительное переменное напряжение, выводы вторичной соединяются накоротко. Напряжение на входе устанавливается с таким расчетом, чтобы величина замыкающего тока соответствовала величине номинального электротока устройства. Величина напряжения определяет энергопотери, приходящиеся на разогрев обмоток, а также на активное сопротивление.

Такой режим характерен для приборов измерительного типа.

Исходя из многообразия устройств и видов назначения трансформаторов, можно с уверенностью сказать, что на сегодня они — незаменимые, использующиеся практически повсеместно устройства, благодаря которым обеспечивается стабильность и достижение необходимых потребителю значений напряжения, как гражданских сетей, так и сетей предприятий промышленности.

Классификация однофазных трансформаторов

Силовой трансформатор

Трансформатор используется в преобразовании электроэнергии в сетях и в устройствах, используемых для получения и применения нужной величины электрической энергии. «Силовой» подразумевает его работу с высоким напряжением. Использование силовых трансформаторов вынуждается разными показателями рабочей мощности ЛЭП, сетей в городской полосе, выводящее напряжение для конечных объектов, а также для общей работы электрических устройств и машин. Мощность разнится от нескольких единиц вольт до сотен киловатт.

Автотрансформатор – один из видов преобразователя, где первичная и вторичная обмотки не разделены, а соединены друг с другом напрямую. Ввиду этого между ними образуется как электромагнитная, так и электрическая связь. Обмотка сопровождается как минимум тремя выводами, подсоединяясь к каждой из них, можно использовать разные мощности. Главным достоинством такого трансформатора – это его высокий уровень КПД, так как преобразуется не всё напряжение, а лишь некоторая часть. Разница особенно заметна, когда входная и выходная мощность имеют незначительные отличия.

Трансформатор тока

Такой трансформатора используется в основном для уменьшения тока первичной обмотки до нужного значения, подходящего в применении цепей измерения, защиты, регулирования и сигнализации. Помимо этого используется в гальванической развязке (передача электроэнергии или сигнала связанными электрическими цепями, при этом электрический контакт между ними отсутствует).

Также читайте: Однофазный литой трансформатор тока — ТШЛ

Нормируемое значение параметров тока вторичной обмотки – 1 А или 5 А. Первичная обмотка трансформатора подсоединяется ступенчато в цепь с нагрузкой, при этом переменный ток подвергается контролю, ко вторичной обмотке подключаются измерительные устройства.

Вторичной обмотке трансформатора тока необходимо постоянно находиться в режиме около короткого замыкания. Ведь при любом варианте разъединения цепи на неё поступает высокая мощность, способная выбить изоляцию и выхода из строя включённых приборов.


Высоковольтный ТТ(слева) и низковольтный ТТ(справа)

Читать более подробно про трансформатор тока.

Трансформатор напряжения

Такой трансформатор получает энергию от источника напряжения. Используется в основном для изменения высокого напряжения в низкое в различных цепях, в том числе измерительных и релейной защиты и автоматики. Имеет возможность проводить изоляцию цепей защиты и измерения от цепей повышенной мощности.


Высоковольтный ТН(слева) и низковольтный ТН(справа)

Читать более подробно про ТН.

Импульсный трансформатор

Применяется для изменения импульсных сигналов с откликом импульса в точности до десятков микросекунд. При этом форма импульса сопровождается лишь незначительным искажением. Главным назначением импульсного трансформатора является передача прямоугольного электрического импульса

Используется для преобразования коротких видеоимпульсов напряжения, зачастую воспроизводящихся с высокой скважностью

Важный параметр при использовании импульсного трансформатора – это неискажённый вид передачи импульсных систем напряжения

При влиянии на вход устройства мощности, отличающейся друг от друга, важно получить напряжение, в точности совпадающее с той же самой формой, разве что, с другой амплитудой или различающейся полярностью


Виды импульсных трансформаторов

Читать более подробно про импульсный трансформатор.

Режим холостого хода трансформатора (ХХ)

В этом режиме сопротивление нагрузки равно бесконечности, в результате чего
можно не учитывать вторичную обмотку и трансформатор работает как обычная катушка индуктивности с ферромагнитным сердечником.
Кроме того, в режиме холостого хода трансформатора определяют его коэффициент трансформации. Схема замещения трасформатора
в режиме холостого хода приведена на рисунке 3.

На эквивалентных схемах трансформатора, приведенных на рисунке 2, показаны:

r1 — активное сопротивление первичной обмотки;
LS1 — индуктивность, отображающая поток рассеяния трансформатора;
r — сопротивление активных потерь в магнитопроводе;
L — основная индуктивность первичной обмотки;
Iμ – ток, создающий основной магнитный поток (ток намагничивания);
Ia – ток активных потерь в сердечнике;
I10 = Ia + Iμ — ток холостого хода трансформатора.

Индуктивность первичной обмотки, которая вместе с потерями в сердечнике влияет на к.п.д. трансформатора, можно рассчитать
по следующей формуле:

где W1 — количество витков первичной обмотки;
    Rm — магнитное сопротивление сердечника;
    μa — магнитная проницаемость сердечника;
    S — площадь сечения сердечника.

Параллельная эквивалентная схема трансформатора более удобна по сравнению с последовательной для построения векторной
диаграммы напряжений и токов для реальной катушки индуктивности. Эта диаграмма приведена на рисунке 3.

Здесь δ — угол потерь в магнитопроводе
       X1 — сопротивление индуктивности рассеяния LS1.

Обратите внимание, что в этом режиме работы трансформатора вектор ЭДС индуцированный в обмотке W2
(напряжение во вторичной обмотке) совпадает по фазе с eL, а напряжение U1, подаваемое
на первичную обмотку трансформатора, является суммой э.д.с. на индуктивности первичной обмотки и падения напряжения на
сопротивлениях индуктивности рассеивания и активного сопротивления первичной обмотки:

Это выражение можно записать немного иначе:

При правильном проектировании трансформатора потери на омическом сопротивлении первичной обмотки малы, поскольку ток холостого
хода много меньше номинального. Тогда угол сдвига фаз между током и напряжением (I10 и U1)
определяется потерями в магнитопроводе. Это позволяет из опыта холостого хода и найти угол потерь δ и рассчитать
потери в сердечнике.

Трансформатор является обращаемым устройством (первичную и вторичную обмотки можно поменять местами!), поэтому для
каждой из обмоток записываем основную формулу трансформаторной ЭДС.

Разделив уравнение (3) на (4), получим выражение для коэффициента трансформации:

Подведем итоги Режим работы трансформатора на холостом ходе позволяет определить:

Коэффициент трансформации

История появления трансформатора

Изображение будущего трансформатора на схеме впервые обнаружили 1831 году в работах М. Фарадея и Д. Генри. Позже Г. Румкорф придумал индукционную катушку особой конструкции, которая являлась, по сути, первым трансформатором.

Братья Гопкинсон создали теорию электромагнитных цепей. Они первыми научились рассчитывать магнитоцепи. Но они не понимали одного: этот прибор имеет свойство изменения напряжения и тока, а именно изменения переменного тока в постоянный, что и делает трансформатор. Эптон, помощник Эдисона, порекомендовал делать сердечники наборными, из отдельных листов металла, чтобы вихревые токи были локализированы.

Охлаждение при помощи масла повлияло на надежную работу преобразователя в лучшую сторону. Свинберн опускал трансформатор в керамический сосуд, наполненный маслом, что в разы повышало надёжность изоляционной обмотки.

В 1928 году было начато производство силовых трансформаторов в СССР, на Московском трансформаторном заводе. В начале 1900-х ученый-металлург Р. Хедфилд на основе своих опытов выяснил, что разнообразные добавки влияют на свойства железа. В ходе дальнейших экспериментов он разработал первый пробник стали, в состав которой входил кремний. Следующим шагом в процессе производства сердечников было установление того факта, что при смешанном воздействии прокатки и нагревания у стали, содержащей кремний, появляются элементарные новые магнитные свойства: магнитное обогащение возросло на 50 %, траты на гистерезис уменьшились в 4 раза, а магнитное проникание увеличилось в 5 раз.

Как правильно подключить

Во всех тонкостях электрики сложно разобраться простому человеку, но при использовании трансформатора понижающего типа в быту важно понимать, как происходит процесс подключения. Бывает, что возникает потребность подключения агрегата сразу на нескольких потребителей

Бывает, что возникает потребность подключения агрегата сразу на нескольких потребителей.

Стоит знать:

При подключении трансформатора сразу на несколько потребителей важно учитывать количество выходных клемм.
Общая потребляемая мощность для жильцов должна быть идентичной мощности трансформатора либо немного ниже. По мнению специалистов, идеальный второй показатель выше первого – на 20%.
Подключается агрегат через электрическую проводку, размер которой не должен быть слишком большим

Достаточно 2 м при монтаже светодиодного освещения во избежании потери мощности.
Суммарная мощность электроприборов не должна быть выше мощности трансформатора.

Если посмотреть на схему подключения понижающего трансформатора, то видно, что монтируется между распределительной коробкой мощностью 220 Вт и лампами накаливания. Провода из распредкоробки подключаются непосредственно к выключателю.

Подключение трансформатора напряжения

При подключении важно, чтобы совпадали все уравнения, касающиеся модели прибора. Также существенное значение имеет фазировка, если в одну цепь подключается сразу несколько приборов параллельно

Во избежание больших потерь мощности фазы должны быть правильно соединены между собой с образованием замкнутого контура. При несовпадении фаз начнет расти нагрузка и падать мощность. Может произойти короткое замыкание.

Трансформатор – электромагнитный аппарат. Повышает либо понижает напряжение переменного тока. Он лишен подвижных частей. Значит, является статическим. По размерам бывает с трехэтажное здание либо миниатюрное, помещаемое в руку. В составе – сердечник и несколько обмоток с расположением на магнитопроводе. Хотя может содержать всего одну обмотку без сердечника.

При работе трансформатора срабатывает принцип электромагнитного взаимодействия. Переменный ток подается на первичную обмотку, меняет направление дважды за цикл. Значит, что вокруг обмотки образуется магнитное поле, но ежесекундно исчезает. Вторичная обмотка – проводник электромагнитного взаимодействия. Там же индуцируется напряжение.

Конечно, простому человеку сложно понять конструкцию, назначение прибора. Для познания можно просто разобрать, прозвонить, подключить или демонтировать в домашних условиях.

Устройство и принцип работы однофазного двухобмоточного трансформатора

Назначение, области применения и классификация трансформаторов

Трансформаторы.

Трансформатором называется электромагнитное устройство, служащее для преобразования электрической энергии переменного тока одного напряжения в электрическую энергию переменного тока другого напряжения без изменения частоты.

Потребность трансформирования, т.е. повышения и понижения переменного напряжения вызвана необходимостью передачи электрической энергии на большие расстояния. Чем выше величина передаваемого напряжения, тем, при равной мощности генератора, меньше ток. Следовательно, для передачи энергии потребуются провода меньшего сечения, что приводит к экономии цветных металлов, к уменьшению веса и стоимости линий электропередач (ЛЭП). Кроме того, с уменьшением тока уменьшаются потери мощности в линиях передач ∆P=I2Rл. Схема передачи электроэнергии на большие расстояния приведена на рис. 4.1.

Рис. 4.1. Схема передачи электроэнергии переменного тока

По применению трансформаторы можно разделить на следующие типы:

1. Силовые трансформаторы, используемые в сетях передачи и распределения электроэнергии.

2. Автотрансформаторы, имеющие плавную регулировку выходного напряжения и используемые для его изменения (регулирования).

3. Измерительные трансформаторы, применяемые в качестве элементов измерительных устройств.

4. Трансформаторы специального назначения (печные, сварочные, пиковые, изолирующие и т.д.)

Применяемые в настоящее время изоляционные материалы позволяют увеличить напряжения в ЛЭП до 1250кВ.

Трансформатор состоит из ферромагнитного (стального) сердечника (ФМС) и двух обмоток: первичной с числом витков W1, к которой подводится напряжение источника U1, и вторичной – с числом витков W2,на зажимах которой возникает напряжение U2.Сердечник трансформатора собирается из отдельных листов электротехнической стали (толщиной 0,3-0,5 мм), изолированных друг от друга для уменьшения потерь на вихревые токи.

Электрическая схема трансформатора представлена на рис. 4.2

Рис. 4.2. Электрическая схема трансформатора.

В основу работы трансформатора положен принцип взаимоиндукции. При включении первичной обмотки W1 на переменное напряжение U1 в ней появится ток I0.Этот ток, протекая по виткам W1, вызовет появление магнитного потока первичной обмотки, который состоит из основного или, по-другому, рабочего потока Ф, замыкающегося по сердечнику и потока рассеяния Фδ1, замыкающегося по воздуху (рис. 4.3.). Электрическая энергия передается из первичной обмотки во вторичную с помощью рабочего потока.

Рис. 4.3. Электромагнитная схема трансформатора в режиме холостого хода.

Переменный синусоидальный рабочий магнитный поток Ф на основании закона электромагнитной индукции наводит в первичной обмотке ЭДС самоиндукции E1, а во вторичной обмотке — ЭДС взаимоиндукции Е2, которая создает на зажимах вторичной обмотки напряжение U2.

Если ко вторичной обмотке трансформатора присоединить нагрузку Zн(рис. 4.4.), то в ней появится ток I2, который, протекая по виткам W2, вызовет появление магнитного потока во вторичной обмотке. Этот поток состоит из потока Ф2, замыкающегося по сердечнику и потока рассеяния Фδ2, замыкающегося по воздуху.

Рис. 4.4. Электромагнитная схема нагруженного трансформатора

Вторичный поток Ф2 по правилу Ленца всегда направлен навстречу потоку первичной обмотки и стремится его уменьшить. Уменьшение потока Ф повлечет за собой уменьшение ЭДС Е1. В результате увеличится разность между напряжением U1 и ЭДС Е1, что приведет увеличению токапеовичной обмоткиI0 до тока I1, что компенсирует поток Ф2 (рис.4.4). Таким образом, суммарный рабочий магнитный поток Ф1 — Ф2останется неизменным и приблизительно равным первоначальному потоку Ф, сцепленному с обеими обмотками трансформатора.

Переменные магнитные потоки рассеяния первичной и вторичной обмоток Фδ1 и Фδ2 сцеплены с одной из обмоток и наводят в них соответствующие ЭДС рассеяния Еδ1 и Еδ2.

Проверка прибора

Принадлежность трансформатора к той или иной группе соединения можно определить полярометром-вольтметром магнитоэлектрической системы с нулем посередине шкалы и отмеченной полярностью его зажимов.

Каждой группе соединений отвечает определенная таблица отклонений стрелки полярометра для испытуемого трансформатора и, сравнив ее с имеющимися, устанавливают группу соединений обмоток.

При включении обмоток ВН на постоянное напряжение определенной полярности в других обмотках трансформатора в момент включения наводится мгновенная ЭДС, величина и направление которой зависят от группы соединения обмоток и фиксируются с помощью полярометра.

В видеоролике, представленном ниже, подробно рассмотрен принцип работы трехфазного трансформатора и его устройство.

ОДНОФАЗНЫЙ ТРАНСФОРМАТОР

Недавно мы подробно изучили оптроны и термисторы, и теперь переходим к следующему уроку. Эта лабораторная работа знакомит с устройством и режимами работы однофазного трансформатора. В этой работе использован школьный демонстрационный трансформатор.

Электрическая схема установки собрана согласно прилагаемой инструкционной карте (Рис. 2 из методического руководства).

На рисунке 5, представлена часть установки, находящаяся под опасным для жизни напряжением. Напряжение на первичной обмотке трансформатора можно регулировать с помощью автотрансформатора.

Ток в первичной обмотке трансформатора измеряется миллиамперметром с пределом измерения до 1 А. Чтобы ток первичной обмотки не превышал 1 А, желательно установить автотрансформатором напряжение около 120 В.

Мощность тока в первичной обмотке измеряется ваттметром.

Напряжение на первичной обмотке трансформатора измеряется лабораторным вольтметром. Вольтметр, встроенный в лабораторный автотрансформатор имеет для этого совершенно не достаточную точность.

Цепь вторичной низковольтной обмотки трансформатора гальванически (т.е. по постоянному току) изолирована от электросети, поэтому прикосновение к ее токоведущим частям не опасно для жизни.

Напряжение во вторичной сети измеряется вольтметром с пределом измерения до 15 или 30 В. Использованный вольтметр имеет не очень высокое внутреннее сопротивление. Поэтому при измерении в режиме холостого хода (Рис. 1 из методического руководства) желательно снять показания с приборов в цепи первичной обмотки при разомкнутой вторичной обмотке, а только затем измерять напряжение холостого хода на вторичной обмотке.

Сила тока в цепи вторичной обмотки достигает нескольких ампер, поэтому надо применять амперметр с пределом измерения до 10 А. Вторичная обмотка трансформатора нагружена мощным сдвоенным реостатом, рассчитанным на ток до 10 А. Обе части реостата соединены параллельно.

С помощью реостата можно задавать ток вторичной обмотки, помня, что чем больше ток во вторичной обмотке, тем больше ток в первичной обмотке, которая намотана гораздо более тонким проводом. Уже при токе 4 А вторичная обмотка заметно нагревается, поэтому желательно не держать установку во включенном состоянии длительное время. При исследовании режима короткого замыкания (Рис.3 из методического руководства) надо сильно понизить напряжение питания первичной обмотки, иначе установка выйдет из строя. Чтобы ток в режиме короткого замыкания составил 4 А во вторичной обмотке, надо питать первичную обмотку напряжением около 20 В.

Форум по теории

Схемы соединений обмоток треугольник и звезда для чайников

Наиболее распространенный вопрос у начинающих изучения устройства трансформаторов или иных электротехнических устройств это «Что такое звезда и треугольник?». Чем же они отличаются и как устроены, попробуем разъяснить в нашей статье. 

Рассмотрим схемы соединений обмоток на примере трехфазного трансформатора. В своем строении он имеет магнитопровод, состоящий из трёх стержней. На каждом стержне есть две обмотки – первичная и вторичная.

На первичную подается высокое напряжения, а со вторичной снимается низкое напряжение и идет к потребителю.

Обратите внимание

В условном обозначении схема соединений обозначается дробью (например, Y⁄∆ или Y/D или У/Д), значение числителя – соединение обмотки высшего напряжения (ВН), а значение знаменателя – низшего напряжения (НН).

Каждый стержень имеет как первичную обмотку так и вторичную (три первичных и три вторичных обмотки). У каждой обмотки есть начало и конец. Обмотки можно соединить между собой способом звезда или треугольник. Для наглядности обозначим вышеперечисленное схематически (рис. 1)

При соединении звездой, концы обмоток соединяются вместе, а из начал идут три фазы к потребителю. Из вывода соединений концов обмоток, выводят нейтральный провод N (он же нулевой). В итоге получается четырёх – проводная, трёхфазная система, которая часто встречается вдоль линий воздушных электропередач.(рис. 2)

Преимущества такой схемы соединения в том, что мы можем получить 2 вида напряжения: фазное (фаза+нейтраль) и линейное. В таком соединении линейное напряжение больше фазного в √3 раз. Зная, что фазное напряжение дает нам 220В, то умножив его на √3 = 1,73, получим примерно 380В – напряжение линейное.

Так же стоит отметить что только в соединении звезда имеется нейтральный провод, который является «уравнителем» нагрузки, чтобы напряжение не менялось и не скакало.

Рассмотрим теперь соединение обмоток треугольником. Если мы конец фазы А, соединим с началом фазы В, конец фазы В соединим с началом фазы С, а конец фазы С соединим с началом фазы А, то получим схему соединения обмотки треугольником. Т.е. в этой схеме обмотки соединены последовательно. (рис. 3)

Важно

В основном такая схема соединения применяется для симметричной нагрузки, где по фазам нагрузка не изменяется. В таком соединении фазное напряжение равно линейному, а вот электрический ток, наоборот, в такой схеме разный. Ток линейный больше фазного тока в √3 раз. Соединение обмотки треугольником обеспечивает баланс ампер-виток для тока нулевой 

последовательности. Простыми словами, схема соединения треугольником обеспечивает сбалансированное напряжение.

Подведем итоги.

Для базового определения схем соединения обмоток силовых трансформаторов, необходимо понимать, что разница между этими соединениями состоит в том, что в звезде все три обмотки соединены вместе одним концом каждой из обмоток в одной (нейтральной) точке, а в треугольнике обмотки соединены последовательно. Соединение звезда позволяет нам создавать два вида напряжения: линейное (380В) и фазное (220В), а в треугольнике только 380В.

Выбор схемы соединения обмоток зависит от ряда причин:

  • Схемы питания трансформатора
  • Мощности трансформатора
  • Уровня напряжения
  • Асимметрии нагрузки
  • Экономических соображений

Так например, для сетей с напряжением 35 кВ и более выгодно соединить обмотку трансформатора схемой звезда, заземлив нулевую точку. В данном случае получится, что напряжение выводов трансформатора и проводов линии передачи относительно земли будет всегда в √3 раз меньше линейного, что приведёт к снижению стоимости изоляции.

На практике чаще всего встречаются следующие группы соединений: Y/Y, D/Y, Y/D.

Группа соединений обмоток Y/Y (звезда/звезда) чаще всего применяется в трансформаторах небольшой мощности, питающих симметричные трёхфазные электроприборы/электроприемники. Так же иногда применяется в схемах большой мощности, когда требуется заземление нейтральной точки.

Группа соединения обмоток D/Y (треугольник/звезда) применяется, в основном в понижающих трансформаторах больших мощностей. Чаще всего трансформаторы с таким соединением работают в составе систем питания токораспределительных сетей низкого напряжения. Как правило, нейтральная точка звезды заземляется, для использования как линейного, так и фазного напряжений.

Группа соединений обмоток Y/D (звезда/треугольник) используется, в основном, в главных трансформаторах больших силовых станций и подстанций, не служащих для распределения.

Принцип действия

Принцип работы однофазного трансформатора довольно простой и основан на генерации электродвижущей силы (ЭДС) в обмотках проводника, который находится в движущемся магнитном поле и сгенерирован при помощи переменного I.

При прохождении электричества по обмоткам первичной катушки создается магнитный поток (Ф), который пронизывает и вторичную катушку. Силовые линии Ф благодаря замкнутой конструкции магнитопровода имеют замкнутую структуру. Для получения оптимальной мощности Т необходимо располагать катушки обмоток на близком расстоянии относительно друг друга.

Исходя из закона электромагнитной индукции происходит изменение Ф и индуцируется в первичной обмотке ЭДС. Эта величина называется ЭДС самоиндукции, а во вторичной — ЭДС взаимоиндукции.

При подключении потребителя к первичной обмотке трансформатора в цепи появится электрическая энергия, которая передается из первичной обмотки через магнитопровод (катушки не связаны гальванически). В этом случае средством передачи электроэнергии служит только Ф. Трансформаторы по конструктивной особенности бывают различные.

По достижению максимальной магнитной связи трансформаторы делятся на следующие типы:

  1. Сильная.
  2. Средняя.
  3. Слабая.

Уровень средней МС достигается только при полностью замкнутом магнитопроводе. Одним из примеров такого Т является стержневой тип, у которого обмотки расположены на железных стержнях и соединены между собой накладками или ярмами. В результате такой конструкции получается полностью замкнутый сердечник.

Примером сильной МС является Т броневого типа, обмотки которого располагаются на одной или нескольких катушках. Эти обмотки расположены очень близко, благодаря чему и обеспечивается минимальная потеря электрической энергии. Магнитопровод полностью покрывает катушки, создавая более сильный Ф, который разбивается на 2 части. У трансформаторов такого типа потоки сцепления между обмотками практически равны.

В основном однофазные трансформаторы имеют две обмотки, первичную и вторичную. На первичную обмотку подают одно значение напряжения, а со вторичной снимают нужное нам напряжение. Чаще всего в повседневной жизни можно увидеть так называемые сетевые трансформаторы, у которых первичная обмотка рассчитана на сетевое напряжение, то есть 220 В.

На схемах однофазный трансформатор обозначается так:

Первичная обмотка слева, а вторичная – справа.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий