Разновидности труб для вентиляции
Основная задача вентиляционной системы – отвод загрязненного воздуха из помещения.
Эффективность и надежность всей системы зависит от выбора типа вентиляционной трубы.
- минимальный диаметр трубы для вентиляции в частном доме должен составлять 15 см;
- поверхности воздуховода должны быть устойчивы к коррозии;
- вес конструкции влияет на сложность монтажных работ и обслуживание;
- размер сечения воздуховода влияет на пропускную способность;
- все элементы системы должны соответствовать требованиям пожарной безопасности.
Важным критерием выбора вентиляционной трубы является материал, из которого она изготавливается. Ниже рассмотрены самые популярные из них.
Пластиковые трубы
Пластиковые воздуховоды производятся из полипропилена, полиуретана и поливинилхлорида. Они отличаются большим разнообразием форм и размеров, наиболее популярными являются круглые и прямоугольные.
Данные типы труб получили широкое распространение благодаря целому ряду достоинств.
Преимущества круглых и прямоугольных пластиковых воздуховодов:
- относительно небольшой вес, благодаря чему монтаж системы может осуществляться одним человеком, кроме того, не создается избыточная нагрузка на подвесные кухонные конструкции;
- низкая уязвимость для воздействия влаги и химических веществ;
- хорошая герметичность;
- простота в обслуживании;
- широкий диапазон рабочих температур;
- низкий уровень шума при работе;
- большой срок службы;
- эстетичный вид;
- экологичность;
- устойчивость к появлению коррозии.
К недостаткам пластиковых труб можно отнести необходимость использовать дополнительные соединительные элементы при монтаже, а также то, что сам процесс установки достаточно сложный и требует специальной подготовки.
Гофрированные трубы
Самым дешевым вариантом для вентиляционной системы является гофрированная труба. Она состоит из металлических колец, обернутых ламинированной фольгой.
В изначальном состоянии кольца плотно прилегают друг к другу, но в процессе монтажа расстояние между ними способно увеличиваться за счет растягивания оболочки, а сама труба может вытягиваться и изгибаться под нужным углом.
Этими свойствами объясняется универсальность труб при монтаже: они легко устанавливаются в самых труднодоступных местах, а весь процесс не вызывает особой сложности.
Важно помнить! При неполном растяжении гофрированной трубы, а также сильном изгибе появляется дополнительное сопротивление потоку воздуха, что вызывает характерный шум.
Основные преимущества гофрированных воздуховодов:
- срок службы — до 50 лет;
- допустимое нагревание поверхностей — до 250 °С;
- устойчивость к воздействию влаги и коррозии;
- относительно легкий монтаж.
Металлические воздуховоды
Материалом для изготовления металлических вентиляционных труб служит оцинкованная или нержавеющая сталь. Они устойчивы к появлению ржавчины и имеют небольшой вес.
Такой тип воздуховода стоит выбирать для установки в помещениях с повышенным содержанием влаги и большими колебаниями температур.
Для монтажа металлических вентиляционных труб достаточно минимальных знаний и навыков.
Тканевые воздуховоды
Воздуховод такого типа представляет собой вентиляционный канал, сделанный из ткани, закрепленный с помощью специальных колец на потолке. За счет давления воздуха, проходящего внутри, конструкции придается форма трубы.
Материалом для изготовления служат полиамид, полиэстер или полиэфир. Тканевые воздуховоды встречаются достаточно редко и изготавливаются на заказ. Для проектировки потребуется опытный специалист.
Основные преимущества:
- быстрый монтаж;
- небольшой вес;
- отсутствие конденсата;
- низкий уровень шума;
- устойчивость к коррозии;
- удобство в обслуживании.
Помимо материала, при подборе и расчете воздуховода необходимо учитывать форму сечения. Большей популярностью пользуются круглые трубы, они оказывают меньшее сопротивление потоку проходящего воздуха.
Прямоугольные трубы не нарушают эстетичный вид помещения, их можно монтировать вплотную к стене.
Гофрированные и тканевые воздуховоды бывают только круглыми в сечении, пластиковые и металлические могут быть и круглой, и прямоугольной формы.
Размеры сечения рассчитываются по специальной формуле для каждого конкретного помещения. На практике часто встречаются диаметры 100-120 мм для круглых труб и размеры 55×110, 60×122 – для прямоугольных.
Аэродинамический расчет воздуховодов
Аэродинамический расчет воздуховодов — один из основных этапов проектирования системы вентиляции, т.к. он позволяет рассчитать сечение воздуховода (диаметр — для круглого, и высоту с шириной для прямоугольного).
Площадь сечения воздуховода выбирается по рекомендуемой скорости для данного случая (зависит от расхода воздуха и от размещения рассчитываемого участка).
F = G/(ρ·v), м²
где G — расход воздуха на рассчитываемом участке воздуховода, кг/сρ — плотность воздуха, кг/м³v — рекомендуемая скорость воздуха, м/с (см. таблицу 1)
Таблица 1. Определение рекомендуемой скорости воздуха в механической системе вентиляции.
При системе вентиляции с естественным побуждением скорость воздуха принимается 0,2-1 м/с. В некоторых случаях скорость может достигать 2 м/с.
Формула для расчета потерь давления при движении воздуха по воздуховоду:
ΔP = ΔPтр + ΔPм.с. = λ·(l/d)·(v²/2)·ρ + Σξ·(v²/2)·ρ,
В упрощенном виде формула потерь давления воздуха в воздуховоде выглядит так:
ΔP = Rl +Z,
Удельные потери давления на трение можно рассчитать по формуле:R = λ·(l/d)·(v²/2)·ρ, [Па/М]
l — длина воздуховода, м
Z — потери давления на местных сопротивлениях, ПаZ = Σξ·(v²/2)·ρ,
Удельные потери давления на трение R можно также определить с помощью таблицы. Достаточно знать расход воздуха на участке и диаметр воздуховода.
Таблица удельных потерь давления на трение в воздуховоде.
Верхняя цифра в таблице — расход воздуха, а нижняя -удельные потери давления на трение (R).
Если же воздуховод прямоугольный, то значения в таблице ищутся исходя из эквивалентного диаметра. Эквивалентный диаметр можно определить по следующей формуле:
dэкв = 2ab/(a+b)
где a и b — ширина и высота воздуховода.
В данной таблице приведены значения удельных потерь давления при коэффициенте эквивалентной шероховатости 0,1 мм (коэффициент для стальных воздуховодов). Если воздуховод изготовлен из другого материала — то табличные значения надо скорректировать по формуле:
ΔP = Rlβ + Z,
где R — удельные потери давления на трениеl — длина воздуховода, мZ — потери давления на местных сопротивлениях, Паβ — поправочный коэффициент, учитывающий шероховатость воздуховода. Его значение можно взять из таблицы ниже.
Также необходимо учитывать потери давления на местные сопротивления. Коэффициенты местных сопротивлений а также методику расчета потерь давления можно взять из таблицы в статье «Расчет потерь давления в местных сопротивлениях системы вентиляции. Коэффициенты местных сопротивлений.» А динамическое давление определяется из таблицы удельных потерь давления на трение (таблица 1).
Чтобы определить размеры воздуховодов при естественной тяге, используют величину располагаемого давления. Располагаемое давление — это то давление, которое создается за счет разности температур приточного и уходящего воздуха, иными словами — гравитационное давление.
Определяются размеры воздуховодов в естественной системе вентиляции с помощью уравнения:
где ΔPрасп — располагаемое давление, Па
0,9 — повышающий коэффициент для запаса мощности
n — количество участков воздуховодов на расчетной ветке
При системе вентиляции с механическим побуждением воздуха, воздуховоды подбираются по рекомендуемой скорости. Далее рассчитываются потери давления по расчетной ветке, и по готовым данным (расход воздуха и потери давления) подбирается вентилятор.
Особенности принудительного воздухообмена
Если естественная вентиляция не обеспечивает полноценное обновление воздуха, в частном доме монтируют мощную приточно-вытяжную систему.
Она помогает сбалансировать воздушные потоки, которые циркулируют между комнатами и внешней средой непрерывно. Такая вентиляция гарантирует стабильную подачу очищенного свежего воздуха и удаление наружу загрязненного.
Описание варианта механической вентиляции
Современные многофункциональные установки приточно-вытяжной вентиляции максимально используют энергию подаваемых воздушных потоков и преобразуют ее в тепло.
Подобные системы производят глубокую очистку приточного воздуха, полностью фильтруя от пыли, различных аллергенов, бактерий и других вредных микроорганизмов.
Дополнительную обработку создают с применением фильтрационного оборудования, высокоэффективных поглотителей шума, ионизационных и увлажняющих устройств, иногда задействуют ароматизирующие аппараты.
Воздушные потоки, которые прошли обработку, распределяются по дому через специальные вентиляционные коробы. Подготовленный чистый воздух поступает в спальню и детскую комнату, кабинет, гостиную, кухню и санузлы, вспомогательные помещения, а удаляется оттуда вытяжной системой
Функциональными элементами системы с принудительным побуждением воздухообмена являются фильтры и рекуператоры, вентиляторы, вытяжки, приборы управления и, непосредственно, блок вентиляции.
Встроенная электроника дает возможность выборочно устанавливать оптимальные пользовательские режимы работы системы по показателям температуры и влажности, по времени. Значительно упрощают эксплуатацию пульты ДУ и смарт-контроллеры.
Механическая вентиляция помогает предупредить образование неприятных запахов на кухне, препятствует появлению сырости и распространению разноцветной плесени, решает проблему постоянной влажности в ванной комнате и конденсата на поверхности теплого пола, стеклопакетов, дверных блоков.
Мощные блоки с интегрированными фильтрами, специальными шумопоглотителями и нагревателями занимают много пространства. Чтобы их расположить, нужно освободить место на чердаке или в подвале частного дома
Современные многофункциональные системы вентиляции с принудительным побуждением часто объединяют с интеллектуальными комплексами управления и контроля. Такие меры оптимизируют работу оборудования всех установленных инженерных систем в доме, позволяют организовать удобное для пользователя удаленное управление техникой через интернет.
Механическая вентиляция с рекуперацией тепла
В схемах с рекуперацией тепла за воздухообмен в здании отвечает приточно-вытяжная стационарная установка. Воздух из окружающей среды поступает в систему, после чего фильтром очищается от пыли, загрязнений и направляется для основного подогрева в рекуператор.
До необходимой температуры воздушные массы нагреваются в электрическом/водяном калорифере и по прочным вентиляционным каналам из оцинкованной стали распределяются по всему дому.
Система с рекуперацией тепла обеспечит высокое качество воздуха в жилом доме круглый год. На низких оборотах работающих вентиляторов приточно-вытяжные стационарные установки функционируют практически бесшумно.
Автоматика дает возможность гибко управлять работой оборудования: регулировать поступление воздуха, устанавливать комфортную температуру, изменять скорость воздушных потоков.
Рекуперация – рациональное использование тепловой энергии вытяжного воздуха для последующего подогрева приточного. Это позволяет сократить до 85% затрат тепла на нагрев воздушного потока из внешней среды в зимний период
Техобслуживание такой установки заключается в регулярной смене фильтров. Новые элементы для очищения воздуха от пыли рекомендовано заменять один раз в квартал.
Система без рекуперации тепла
Чтобы организовать функциональную приточно-вытяжную вентиляцию без воздушного рекуператора используют сразу несколько вытяжных систем и центральную приточную установку. Уличный воздух подогревается или охлаждается, затем проходит очистку в фильтре, после чего по сети каналов распределяется по жилым комнатам.
Удаление отработанных тяжелых масс воздуха производится вытяжками в помещениях хозяйственного и технического назначения. Такие системы делают отчасти естественными и частично принудительными. Они функционируют за счет естественной тяги и благодаря канальным вентиляторам.
Приточно-вытяжные схемы без рекуперации тепла обеспечивают подогрев и очищение поступающего в дом воздуха, но расходуют большое количество энергии на постоянную обработку воздушных потоков.
Расчет воздухообмена
движение потоков воздуха при разных схемах вентиляции Если в помещении нет ядовитых выделений или их объем находится в допустимых пределах, воздухообмен или нагрузка на вентиляцию рассчитывается по формуле:
R=n * R1,
здесь R1 — потребность в воздухе одного сотрудника, в куб.м\час, n — количество постоянных сотрудников в помещении.
Для помещений бытового, санитарного и подсобного назначения расчет вентиляции по вредностям производится на основании утвержденных норм кратности воздухообмена:
- для административных зданий (вытяжка) — 1,5;
- холлы (подача) — 2;
- конференц-залы до 100 человек вместимостью (по подаче и вытяжке) — 3;
- комнаты отдыха: приток 5, вытяжка 4.
Для производственных помещений, в которых постоянно или периодически в воздух выделяются опасные вещества, расчет вентиляции производится по вредностям.
Воздухообмен по вредностям (парам и газам) определяют по формуле:
Q=K\(k2-k1),
здесь К — количество пара или газа, появляющееся в здании, в мг\ч, k2 — содержание пара или газа в оттоке, обычно величина равна ПДК, k1 — содержание газа или пара в приточке.
Разрешается концентрация вредностей в приточке до 1\3 от ПДК.
Для помещений с выделением избыточного тепла воздухообмен рассчитывается по формуле:
Q=Gизб\c(tyx — tn),
здесь Gизб — избыточное тепло, вытягиваемое наружу, измеряется в Вт, с — удельная теплоемкость по массе, с=1 кДж, tyx — температура удаляемого из помещения воздуха, tn — температура приточки.
Вычисление площади воздуховодов
На размер трубы вентиляции влияют такие характеристики, как массив воздуха, нагнетаемого внутрь помещений, скорость движения потока и уровень его давления на стенки и другие элементы магистрали.
Достаточно, не рассчитав всех последствий, уменьшить диаметр магистрали, как сразу же возрастет скорость воздушного потока, что приведет к увеличению давления по всей протяженности системы и в местах сопротивления. Кроме появления излишнего шума и неприятной вибрации трубы, электрические зафиксируют также рост расхода электроэнергии.
Однако далеко не всегда в погоне за устранением указанных недостатков можно и нужно увеличивать сечение вентиляционной магистрали. Прежде всего, этому могут воспрепятствовать ограниченные габариты помещений. Поэтому следует особенно тщательно подойти к процессу расчета площади трубы.
Поэтапная работа с аэродинамическим расчетом в Excel
Если вам нужно сделать аэродинамический расчет, но вы не готовы просчитывать эти колоссальные формулы вручную, тогда поможет Excel.
- Расход воздуха на каждом участке.
- Длину каждого из них.
- Рекомендуемую скорость. После заполнения, в файле уже будет рассчитано минимальная необходимая площадь сечения.
- Ориентируясь по рекомендуемой площади нужно подобрать размер воздуховода. Просто введите высоту и ширину в столбик F и G, как тут же рассчитается скорость на участке и эквивалентный диаметр. В итоге и число Рейнольдса.
- Эквивалентная шероховатость вводится также вручную.
- На каждом участке необходимо будет посчитать сумму КМС и также занести в таблицу.
- Наслаждаться результатом расчетов!
Напомним, аэродинамический расчет в Excel сделан для прямоугольных стальных воздуховодов при температуре подаваемого воздуха 20°С. Если у вас параметры другие, замените значение плотности, шероховатости и вязкости на ваши. Таблица полностью отвечает расчетным формулам и готова к использованию. Успешных вам аэродинамических расчетов!!!
Расчет воздухообмена
движение потоков воздуха при разных схемах вентиляции
Если в помещении нет ядовитых выделений или их объем находится в допустимых пределах, воздухообмен или нагрузка на вентиляцию рассчитывается по формуле:
R=n * R1,
здесь R1 — потребность в воздухе одного сотрудника, в куб.м\час, n — количество постоянных сотрудников в помещении.
Для помещений бытового, санитарного и подсобного назначения расчет вентиляции по вредностям производится на основании утвержденных норм кратности воздухообмена:
- для административных зданий (вытяжка) — 1,5;
- холлы (подача) — 2;
- конференц-залы до 100 человек вместимостью (по подаче и вытяжке) — 3;
- комнаты отдыха: приток 5, вытяжка 4.
Для производственных помещений, в которых постоянно или периодически в воздух выделяются опасные вещества, расчет вентиляции производится по вредностям.
Воздухообмен по вредностям (парам и газам) определяют по формуле:
Q=K\(k2-k1),
здесь К — количество пара или газа, появляющееся в здании, в мг\ч, k2 — содержание пара или газа в оттоке, обычно величина равна ПДК, k1 — содержание газа или пара в приточке.
Разрешается концентрация вредностей в приточке до 1\3 от ПДК.
Для помещений с выделением избыточного тепла воздухообмен рассчитывается по формуле:
Q=Gизб\c(tyx — tn),
здесь Gизб — избыточное тепло, вытягиваемое наружу, измеряется в Вт, с — удельная теплоемкость по массе, с=1 кДж, tyx — температура удаляемого из помещения воздуха, tn — температура приточки.
Расчет диаметра воздуховодов
воздуховоды различного диаметра и формы сечения Диаметры и сечения воздуховодов вентиляции рассчитывают после того, как составлена общая схема системы. При расчетах диаметров воздуховодов вентиляции учитывают следующие показатели:
- Объем воздуха (приточного или вытяжного), который должен пройти через трубу за заданный промежуток времени, куб.м\ч;
- Скорость движения воздуха. Если при расчетах вентиляционных труб скорость движения потока занижена, установят воздуховоды слишком большого сечения, что влечет дополнительные расходы. Завышенная скорость приводит к появлению вибраций, усилению аэродинамического гула и повышению мощности оборудования. Скорость движения на притоке 1,5 — 8 м\сек, она меняется в зависимости от участка;
- Материал вентиляционной трубы. При расчете диаметра этот показатель влияет на сопротивление стенок. Например, наиболее высокое сопротивление оказывает черная сталь с шероховатыми стенками. Поэтому расчетный диаметр воздуховода вентиляции придется немного увеличить по сравнению с нормами для пластика или нержавейки.
Вид участка | Скорость потока, м\с |
Магистральные трубопроводы | От 6 до 8 |
Боковые отводки | От 4 до 5 |
Распределительные трубопроводы | От 1,5 до 2 |
Верхние приточки | От 1 до 3 |
Вытяжки | От 1,5 до 3 |
Таблица 1. Оптимальная скорость воздушного потока в трубах вентиляции.
Когда известна пропускная способность будущих воздуховодов, можно рассчитать сечение воздуховода вентиляции:
S=R\3600v,
здесь v — скорость движения воздушного потока, в м\с, R — расход воздуха, кубометры\ч.
Число 3600 — временной коэффициент.
Зная площадь сечения, можно рассчитать диаметр круглого воздуховода вентиляции:
здесь: D — диаметр вентиляционной трубы, м.
Если необходимо рассчитать диаметр вентиляционной трубы прямоугольного сечения, ее показатели подбирают исходя из полученной площади сечения круглой трубы.
Расчет площади элементов вентиляции
Расчет площади вентиляции необходим в том случае, когда элементы изготавливаются из листового металла и нужно определить количество и стоимость материала.
Площадь вентиляции рассчитывают электронные калькуляторы или специальные программы, их во множестве можно найти в интернете.
Мы приведем несколько табличных значений наиболее популярных элементов вентиляции.
Диаметр, мм | Длина, м | |||
1 | 1,5 | 2 | 2,5 | |
100 | 0,3 | 0,5 | 0,6 | 0,8 |
125 | 0,4 | 0,6 | 0,8 | 1 |
160 | 0,5 | 0,8 | 1 | 1,3 |
200 | 0,6 | 0,9 | 1,3 | 1,6 |
250 | 0,8 | 1,2 | 1,6 | 2 |
280 | 0,9 | 1,3 | 1,8 | 2,2 |
315 | 1 | 1,5 | 2 | 2,5 |
Таблица 2. Площадь прямых воздуховодов круглого сечения.
Значение площади в м. кв. на пересечении горизонтальной и вертикальной строчки.
Диаметр, мм | Угол, град | ||||
15 | 30 | 45 | 60 | 90 | |
100 | 0,04 | 0,05 | 0,06 | 0,06 | 0,08 |
125 | 0,05 | 0,06 | 0,08 | 0,09 | 0,12 |
160 | 0,07 | 0,09 | 0,11 | 0,13 | 0,18 |
200 | 0,1 | 0,13 | 0,16 | 0,19 | 0,26 |
250 | 0,13 | 0,18 | 0,23 | 0,28 | 0,39 |
280 | 0,15 | 0,22 | 0,28 | 0,35 | 0,47 |
315 | 0,18 | 0,26 | 0,34 | 0,42 | 0,59 |
Таблица 3. Расчет площади отводов и полуотводов круглого сечения.
Расчет системы вентиляции
Нормативный объем приточного воздуха
Обычно в жилых зданиях используются системы естественной вентиляции. В этом случае наружный воздух поступает внутрь помещений через фрамуги, форточки и специальные клапаны, а его удаление происходит с помощью вентиляционных каналов. Они могут быть приставными или располагаться во внутренних стенах. Возведение вентиляционных каналов во внешних ограждающих конструкциях не допускается из-за возможного образования конденсата на поверхности и последующего повреждения сооружений. Кроме того, охлаждение может снижать скорость воздухообмена.
Обеспечение естественного притока воздуха с помощью проветривания
Определение параметров вентиляционных труб для жилых зданий осуществляется на основании требований, регламентируемых СНиП, и другими нормативными документами. Кроме того, важен и показатель кратности обмена, который отражает эффективность функционирования вентиляционной системы. Согласно ему объем притока воздуха в помещение зависит от его назначения и составляет:
- Для жилых зданий —3 м3/час на 1 м2 площади, независимо от числа людей, пребывающих на территории. По санитарным нормам для временно находящихся достаточно 20 м3/час, а для постоянных жителей — 60 м3/ час.
- Для подсобных сооружений (гараж и т.п.) —не менее 180 м3/час.
Чтобы рассчитать диаметр труб для вентиляции, в качестве основы берут систему с естественным притоком воздуха, без установки специальных устройств. Самый простой вариант — воспользоваться соотношением площади помещения и сечения вентиляционного отверстия.
В жилых зданиях на 1 м2 необходимо 5,4 м2 сечения воздуховода, а в подсобных — около 17,6 м2. Однако менее 15 м2 его диаметр быть не может, иначе не обеспечивается циркуляция воздуха. Более точные данные получаются при помощи сложных расчетов.
Алгоритм определения диаметра вентиляционной трубы
На основании таблицы, приведенной в СНиП, производится определение параметров вентиляционной трубы на основании кратности воздухообмена. Она представляет собой величину, которая показывает, сколько раз в течение часа происходит замена воздуха в помещении, и зависит от его объема. Прежде чем определить диаметр трубы для вентиляции, выполняют следующее:
- Вычисляют объем каждого помещения, путем перемножения трех его размеров.
- Определяют необходимый объем воздуха согласно формуле (отдельно для каждого помещения)
- Обычно для большинства комнат нормируется или вытяжка, или приток. В некоторых помещениях нужно обеспечить и поступление воздуха, и его своевременное удаление.
- Все значения L нужно округлить в сторону увеличения таким образом, чтобы получить цифру, кратную 5.
- Для тех помещений, где необходим только приток или вытяжка, расчетный объем воздуха суммируют отдельно.
- Составляют баланс, в котором суммарные объема притока и вытяжки должны совпадать.
- Определив необходимый объем воздуха для всего жилья, по диаграмме находят диаметр трубы для вытяжки. При этом необходимо учитывать, что скорость в центральном воздуховоде не должна превышать 5 м/с, а в его ответвлениях — 3 м/с.
Диаграмма для определения диаметра вентиляционной трубы
С чего начинать?
Диаграмма потери напора на каждый метр воздуховода.
Очень часто приходится сталкиваться с достаточно простыми схемами вентиляции, в которых присутствует воздухопровод одного диаметра и нет никакого дополнительного оборудования. Такие схемы просчитываются достаточно просто, но что делать, если схема сложная с множеством ответвлений? Согласно методике просчета потерь давления в воздуховодах, которая изложена во многих справочных изданиях, нужно определить самую длинную ветвь системы либо ветку с наибольшим сопротивлением. Выяснить таковую по сопротивлению на глаз удается редко, поэтому принято вести расчет по самой протяженной ветви. После этого пользуясь величинами расходов воздуха, проставленных на схеме, всю ветку делят на участки по этому признаку. Как правило, расходы меняются после разветвлений (тройников) и при делении лучше всего ориентироваться на них. Бывают и другие варианты, например, приточные или вытяжные решетки, встроенные прямо в магистральный воздуховод. Если на схеме это не показано, а такая решетка имеется, потребуется расход после нее высчитать. Участки нумеруют начиная от самого удаленного от вентилятора.
Расчет нормального воздухообмена для эффективной вентиляции квартиры или дома
Итак, при нормальной работе вентиляции в течение часа воздух в помещениях должен постоянно меняться. Действующими руководящими документами (СНиП и СанПиН) установлены нормы притока свежего воздуха в каждое из помещений жилой зоны квартиры, а также минимальные объемы его вытяжки через каналы, расположенные на кухне, в ванной в санузле, иногда – и в некоторых других специальных помещениях.
Эти нормативы, опубликованные в нескольких документах, для удобства читателя объединены в одну таблицу, показанную ниже:
Тип помещения | Минимальные нормы воздухообмена (кратность в час или кубометров в час) | |
---|---|---|
ПРИТОК | ВЫТЯЖКА | |
Требования по Своду Правил СП 55.13330.2011 к СНиП 31-02-2001 «Одноквартирные жилые дома» | ||
Жилые помещения с постоянным пребыванием людей | Не менее однократного обмена объема в течение часа | — |
Кухня | — | 60 м³/час |
Ванная, туалет | — | 25 м³/час |
Остальные помещения | Не менее 0,2 объема в течение часа | |
Требования по Своду Правил СП 60.13330.2012 к СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование воздуха» | ||
Минимальный расход наружного воздуха на одного человека: жилые помещения с постоянным пребыванием людей, в условиях естественного проветривания: | ||
При общей жилой площади более 20 м² на человека | 30 м³/час, но при этом не менее 0,35 от общего объема воздухообмена квартиры в час | |
При общей жилой площади менее 20 м² на человека | 3 м³/час на каждый 1 м² площади помещения | |
Требования по Своду Правил СП 54.13330.2011 к СНиП 31-01-2003 «Здания жилые многоквартирные» | ||
Спальная, детская, гостиная | Однократный обмен объема в час | |
Кабинет, библиотека | 0,5 от объема в час | |
Бельевая, кладовка, гардеробная | 0,2 от объема в час | |
Домашний спортзал, биллиардная | 80 м³/час | |
Кухня с электрической плитой | 60 м³/час | |
Помещения с газовым оборудованием | Однократный обмен + 100 м³/час на газовую плиту | |
Помещение с твёрдотопливным котлом или печью | Однократный обмен + 100 м³/час на котел или печь | |
Домашняя прачечная, сушилка, гладильная | 90 м³/час | |
Душевая, ванная, туалет или совмещенный санузел | 25 м³/час | |
Домашняя сауна | 10 м³/час на каждого человека |
Пытливый читатель наверняка заметит, что нормативы по разным документам несколько отличаются. Причем, в одном случае нормы устанавливаются исключительно по размерам (объему) помещения, а другом – по количеству людей постоянно пребывающих в этом помещении. (Под понятием постоянного пребывания имеется в виду нахождение в комнате 2 часа и более).
Поэтому при проведении расчетов вычисления минимального объема воздухообмена желательно проводить по всем доступным нормативам. А затем – выбрать результат с максимальным показателем – тогда ошибки точно не будет.
Провести быстро и точно расчет притока воздуха для всех помещений квартиры или дома поможет первый предлагаемый калькулятор.
Калькулятор расчета требуемых объемов притока воздуха для нормальной вентиляции
Как видите, калькулятор позволяет провести вычисления и от объёмов помещений, и от количества постоянно пребывающих в них людей. Повторимся, желательно провести оба расчета, а затем выбрать из двух получившихся результатов, если они будут различаться, максимальный.
Проще будет действовать, если заранее составить небольшую таблицу, в которой перечислены все помещения квартиры или дома. А затем в нее вносить полученные значения притока воздуха – для комнат жилой зоны, и вытяжки – для помещений, где предусмотрены вытяжные вентиляционные каналы.
К примеру, это может выглядеть так:
Помещение и его площадь | Нормы притока | Нормы вытяжки | ||
---|---|---|---|---|
1 способ – по объему комнаты | 2 способ – по количеству людей | 1 способ | 2 способ | |
Гостиная, 18 м² | 50 | — | — | |
Спальная, 14 м² | 39 | — | — | |
Детская, 15 м² | 42 | — | — | |
Кабинет, 10 м² | 14 | — | — | |
Кухня с газовой плитой, 9 м² | — | — | 60 | |
Санузел | — | — | — | |
Ванная | — | — | — | |
Гардероб-кладовая, 4 м² | — | |||
Суммарное значение | 177 | |||
Принимаемое общее значение воздухообмена |
Затем суммируются максимальные значения (они в таблице для наглядности выделены подчёркиванием), отдельно для притока и для вытяжки воздуха. А так как при работе вентиляции должно соблюдаться равновесие, то есть сколько воздуха в единицу времени поступило в помещения – столько же должно и выйти, итоговым выбирается также максимальное значение из полученных двух суммарных. В приведенном примере – это 240 м³/час.
Этот значение и должно быть показателем суммарной производительности вентиляции в доме или квартире.
Расчёт площади фасонных частей воздуховода
Человеку, не связанному с математическими формулами, будет сложно выполнить подсчёты правильно, ошибка в одном показателе повлияет на эксплуатационные характеристики вентиляционной системы, соответственно,и на качество очистки воздуха.
Для упрощения процесса расчёта площади поверхности воздуховода можно использовать онлайн-калькулятор и специальные программы, которые выполняют все алгоритмы, для этого потребуется лишь ввести первичные показатели.
Программа подсчёта и подбора элементов
Какие существуют программы для нахождения параметров фасонных частей воздуховода
В помощь инженерным работникам для исключения ошибок, связанных с человеческим фактором, а также для ускорения процесса были созданы специальные программы, с помощью которых можно не только выполнить грамотно расчёты, но и 3D моделирование будущей конструкции.
Программа | Краткое описание |
Vent-Calc | Программа рассчитывает площадь сечения, тягу, сопротивление на разных отрезках. |
GIDRV 3.093 | Программа выполнит новый и контрольный подсчётданных воздуховода. |
Ducter 2.5 | В программе можно подобрать элементы вентсистемы, рассчитать площади сечений конструкции. |
CADvent | Данный комплекс создан на базе AutoCAD, имеет самую подробную библиотеку элементов и возможностей. |
Программный расчёт и проектирование вентиляции
Как определяется диаметр вентиляционной трубы?
На территории России имеется ряд нормативных документов СНиП, где говорится, как рассчитать диаметр трубы для вентиляции естественного типа. Выбор основывается на кратности воздухообмена – определяющий показатель, какой объем и сколько раз за час заменяется воздух в помещении.
Сначала необходимо провести следующие действия:
- выполняются вычисления объема каждой комнаты в здании – требуется перемножить длину, высоту и ширину;
- объем воздуха вычисляется по формуле: L=n (нормируемая кратность воздухообмена)*V (объем помещения);
- полученные показатели L округляются в большую сторону до цифры кратной 5;
- составление баланса происходит так, чтобы вытяжные и приточные воздушные потоки совпадали в суммарном объеме;
- учитывается также максимальная скорость в центральном воздуховоде, показатели не должны быть больше 5 м/с, а на ответвленных участках сети не более 3 м/с.
Диаметр ПВХ труб вентиляции и из других материалов выбирается по полученным данным по представленной таблице:
При написании проекта кроме расчета диаметра трубы для естественной вентиляции важным пунктом считается определение длины наружной части воздуховода. В общую величину входит протяженность всех каналов в здании, по которым циркулирует воздух и выводится наружу.
Расчеты производятся по таблице:
При расчете учитываются следующие показатели:
- если используется плоский воздуховод на установке над крышей, то минимальная длина должна составлять 0,5 м;
- при установке трубы вентиляции рядом с дымовой высота делается одинаковой, чтобы предотвратить в сезон отопления попадания дыма в помещение.
Производительность, эффективность и бесперебойная работа вентиляционной системы во многом зависит от правильности расчетов и соблюдения требований монтажа. Лучше выбирать проверенные компании с положительной репутацией!
Комментариев:
- Для чего необходимо знать о площади воздуховодов?
- Как посчитать площадь используемого материала?
- Вычисление площади воздуховодов
Возможная концентрация в закрытых помещениях воздуха, загрязненного пылью, водными парами и газами, продуктами термической переработки пищи, заставляет устанавливать системы вентиляции. Чтобы эти системы были эффективными, приходится делать серьезные расчеты, в том числе и расчет площади воздуховодов.
Выяснив ряд характеристик строящегося объекта, в том числе площади и объемы отдельных помещений, особенности их эксплуатации и количество людей, которые будут там находиться, специалисты, применяя специальную формулу, могут установить проектную производительность вентиляции. После этого появляется возможность рассчитать площадь сечения воздуховода, которое обеспечит оптимальный уровень проветривания внутренних помещений.