Принцип работы теплообменника в системе отопления

Принцип работы и схема агрегата

Устройство, расчет и промывка пластинчатых теплообменников для отопления основываются на том, что узел функционирует благодаря наличию 4 отверстий:

  • 2 отверстия для притока и отвода горячей рабочей среды;
  • 2 отверстия для обеспечения герметичной стыковки пластин и предотвращения смешивания теплоносителей – данную задачу выполняют уплотнители.

Движение жидкости в агрегате осуществляется по принципу завихрения потока. В результате из-за относительно небольшого сопротивления движению рабочей среды усиливается интенсивность передачи тепловой энергии. Также вследствие небольшого сопротивления при прохождении жидкости уменьшается количество накипи во внутренних полостях.


Как выглядит пластинчатый теплообменник

Принцип работы пластинчатого теплообменника, базирующийся на петлях и завихрениях, способствует многократному обмену энергией. В результате достигается максимальный КПД агрегата, на что оказывает положительное влияние и вывод патрубков в оба виды панелей – прижимные и неподвижные.

Устройство теплообменника идеально соответствует условиям эксплуатации: количество пластин увеличивается соразмерно потенциальным потребностям в мощности системы. Число рабочих элементов оказывает прямое влияние на КПД и производительность отопительного или охлаждающего оборудования.

Как использовать?

Существует два основных варианта использования теплообменника для нагрева воды:

  1. Первый вариант – подогрев проточной воды. Недостатками этого метода являются ограниченный расход воды, сложность поддержания тепла, отсутствие запасов воды. Плюсы – компактность системы.
  2. Нагрев в ёмкости. Теплообменник погружается в бак и заполняется водой. Конструкция позволяет поддерживать температуру длительное время, при этом всегда есть запас воды. Недостаток метода – большие габариты бака требуют много пространства.

Все, что необходимо знать о горячей воде, представлено в этом разделе сайта.

Правильная эксплуатация

Промывку теплообменника проводят в зависимости от жесткости воды

Транспортировка, монтаж и эксплуатация теплообменного устройства подробно описаны в инструкции:

  • Теплообменник в аппарате размещают так, чтобы к нему был свободный доступ для осмотра и ремонта.
  • Запуск выполняют при стабильных показателях давления и температуры. Нельзя повышать температуру быстрее, чем на 10 градусов в минуту или увеличивать давление больше, чем на 10 бар в час.
  • При заполнении водой воздушные клапаны и вентили за теплообменником остаются открытыми. После запуска насоса их закрывают. Таким образом добиваются стабильного давления.

  • Изменять параметры нагрева нужно плавно. Чем медленнее это происходит, тем дольше прослужат уплотнители и сам теплообменник.
  • Периодически устройство нужно чистить. Пластинчатый очищают прямо в раме, затем вынимают пластины и промывают. Возможен другой метод: сначала изъятие, а затем очистка пластин. Кожухотрубные чистить не рекомендуют. При сложных засорениях мастер ставит заглушку.
  • Перед повторным пуском проверяют состояние всех прокладок. Давление и температуру устанавливают как при 1 запуске.

Классификация и принцип работы

Как упоминалось ранее, сегодня существует несколько разновидностей тепловых обменников. Они различаются по своей конструкции и устройству. Рассмотрим их свойства и особенности подробно.

Первичные

Первичная разновидность обменника выполнена в форме крупной и изогнутой трубки, похожей на змеевик. Как правило, данную деталь изготавливают из металла, который не подвержен губительному влиянию коррозии. Кроме того, в плоскости такого элемента присутствуют специальные пластинки, имеющие различные размеры.

Обычно поверхности первичных тепловых обменников обрабатываются специальными красками, которые защищают основания от негативного внешнего воздействия и появления ржавчины.

Что касается принципа работы такого обменника, то он заключается в отправке энергии от газа к тепловому носителю. Уровень мощности обменника находится в зависимости от длины трубы и числа ребер.

Зачастую первичный теплообменник выходит из строя из-за грязи и копоти или активного внутреннего скопления солевых отложений. Если такие загрязнения оказывают влияние на деталь, то с течением времени она может начать работать со сбоями в процессе циркуляции. Кроме того, уровень теплопроводности стен агрегата от этого так же может ощутимо снизиться.

Отопительное оборудование с такой деталью, как правило, стоит дешевле и имеет несложную конструкцию. Поломкам такие модели не подвержены, особенно если их вовремя обслуживать. Однако нужно учесть, что первичный тепловой обменник является менее функциональным, так как выполняет только одну задачу

Кроме того, очень важно учитывать тот факт, что такие изделия рекомендуется дополнять специальными фильтрами. Эти составляющие будут надежно защищать обменник от негативных внешних воздействий и разного рода отложений

Вторичный

Вторичный, или теплообменник горячего водоснабжения, отличается от первичного экземпляра тем, что в его конструкции имеются специальные пластинки, которые соединяются между собой. Наиболее распространенными являются вторичные теплообменники, произведенные из стали.

В подобных моделях тепло передается от жидкости к жидкости. Они являются более надежными и долговечными. Что касается скорости теплового обмена, то она в таких моделях является более высокой. Благодаря данной особенности различные загрязнения/соли не откладываются на поверхности комплектующих деталей. Из-за этого обменники служат гораздо дольше, а также их не приходится постоянно подвергать очистке. Чем больше пластинок в таких изделиях, тем более высокими являются их параметры мощности, а также эффективность выполняемой задачи.

Такие разновидности теплообменников хороши своей многофункциональностью – они отвечают не только за отопление жилища, но и за обеспечение горячим водоснабжением (ГВС). Обычно котлы с этими элементами стоят дороже, однако их покупают больше за счет практичности и необходимого функционала.

Совмещенный (битермический)

Такой тепловой обменник отличается от остальных вариантов тем, что имеет двойной обмен тепла – от теплоносителя к воде и от газа к тепловому носителю. Вода в отопительной трубе подогревается с внешней стороны, а в это время внутреннее отделение подготавливает горячую воду.

Эти детали являют собой трубу с припаянными к ней пластинками-ребрами из меди. При этом сама труба является двойной (с двумя раздельными отсеками). Ее внутренняя часть отвечает за горячую воду, а внешняя предназначена для самого теплового носителя.

Совмещенная разновидность теплового обменника имеет одно важное преимущество – для нее характерна очень простая конструкция, не подверженная поломкам. В данном случае вторичный теплообменник не нужен, как и трехкодовый клапан

Благодаря этим характерным особенностям котлы с подобными элементами обходятся недорого, а их размеры являются компактными.

Разумеется, такие варианты обменников имеют и свои минусы. Например, они не могут похвастаться большой мощностью в режиме горячего водоснабжения. Кроме того, подобные разновидности подвержены солевым отложениям. Соли, которые содержатся в воде, в короткие сроки оседают на таких деталях, что негативно сказывается на работе котла в целом.

Также нужно учитывать, что ремонт битермических обменников – дело не из простых. По словам специалистов, в 90% случаев починка этих моделей не представляется возможной. Кроме того, далеко не каждый мастер соглашается работать с подобной деталью, а те, кто все-таки берется за такую работу, не всегда имеют достаточную квалификацию. Кроме того, совмещенные элементы подвержены появлению протечек из-за большого числа внутренних стыков и соединений.

Разборные конструкции

Пластинчатый разборный теплообменник – аппарат для многоквартирных домов, тепловых пунктов, котельных. Конструкция позволяет разобрать устройство для диагностики неисправностей, очистки от накипи и механических примесей.

Пластинчатый разборный теплообменник для горячего водоснабжения и отопления

Своевременное сервисное обслуживание восстанавливает эксплуатационные свойства изделия.

Ключевые достоинства конструкции:

1. Ремонтопригодность. Для восстановления функционирования устройства достаточно заменить неисправную пластину.

2. Резиновые прокладки предотвращают утечку при любом повреждении теплообменника. Они устойчивы к перепадам давления и температуры.

Как сделать обменник своими руками

  1. Для теплообменника с емкостью потребуется бак, пара трубок из меди. Можно использовать листовую сталь в толщину 2,5- 3 мм, сварить из нее резервуар нужногО объема.
  2. Установите емкость от пола не менее 1 метра, от печи – не менее 3 метров.
  3. Проделайте два отверстия справа, ближе к конструкции и слева – наверху.
  4. Подведите к печи нижний отвод, под наклоном в 2- 3 градуса.
  5. Подключите верхний отвод под углом в 20 гр., только в обратную сторону.
  6. Врежьте в нижний отвод на выходе кран для слива воды из бака.
  7. Внизу еще один кран для слива воды из всей системы.
  8. Проверьте конструкцию, она должна быть герметичной, можно заполнить водой и под легким напором выявить места протечки, устранить их.

Виды теплообменников

Теплообменные агрегаты могут быть различных типов. Их отличие заключается в способе передачи тепловой энергии. Выделяют следующие виды представленных аппаратов:

  1. Смесительные. В них передача тепловой энергии осуществляется благодаря смешению двух рабочих сред. По конструкции эти устройства намного проще, чем поверхностные. Использовать такие агрегаты получается только при условии возможности смешивания носителей тепла. Это условие и служит главным недостатком смесительных приборов.
  2. Поверхностные. В них осуществляется обмен энергией между рабочими носителями тепла посредством стенок разделителя. Такие устройства подразделяются на рекуперативные и регенеративные. В рекуперативных при передаче тепловой энергии через разделительную стенку поток тепла движется в одном направлении в каждой точке стенки. Для регенеративного теплообменного аппарата свойственно то, что носитель тепла при попеременном касании одной и той же поверхности, время от времени изменяет направление потока.

Типы теплообменников

Функции теплообменников для котлов достаточно многочисленны и важны, поскольку именно от данного прибора во многом зависит назначение и конструкция самого используемого котла. Кроме этого с помощью теплообменника холодный теплоноситель получает необходимый объем тепла от уже нагретого. Еще одна важная функция: устройство осуществляет передачу энергии тепла от теплоносителя к санитарной воде, а также от сгораемого газа непосредственно к теплоносителю.

В зависимости от способа передачи тепла жидкостям выделяют следующие виды теплообменников:

  1. Первичный – передача энергии осуществляется от газа к теплоносителю;
  2. Вторичный (водоводяной) – передача энергии осуществляется от жидкости к теплоносителю;
  3. Битермический (совмещенный), особенностью которых является двойной обмен тепла от теплоносителя к воде и от газа к теплоносителю.

Выбираем тепловой насос: основные критерии

Тем, кто планирует приобрести такое оборудование, рекомендуется выбирать подходящую модель по следующим критериям:

Расчет мощности теплового насоса. Какой мощностью должен обладать насос? Чтобы рассчитать нужную вам мощность, нужно знать следующие параметры: объём теплоотдачи отопительным системам, общую площадь поверхности труб в испарители и конденсаторе, а также объём рабочей жидкости (хладагента).

Удобным решением в этом случае будет использование для расчетов онлайн калькулятора. Чаще всего там требуется ввести:

  • высоту потолков и общую площадь дома (высчитывается отапливаемая площадь);
  • регион проживания (определяется средние температуры воздуха);
  • энергоэффективность объекта (степень утепления дома) – рассчитывается требуемая производительность теплового насоса.

Пример расчетов. Для отопления дома площадью 150 м² рекомендуется ТН производительностью 11-13 кВт.

Расчет теплового насоса

Как мы уже упоминали выше, низкопотенциальными источниками тепла для таких насосов чаще всего бывают перечисленные ниже среды:

  1. Воздух из наружного пространства с температурой в среднем от -15 до +25 градусов.
  2. Воздух из обогреваемого помещения, его температура составляет +15 — +25 градусов.
  3. Воздух, из подпочвенного зонда нагретый до плюс 4 — 10 градусов.
  4. Воздух из геотермальных пластов, температура которого может быть 10 и более градусов.
  5. Воздух из донных зондов незамерзающих водоемов с температурой 0 – 10 градусов, в том числе и полученный в зондах, установленных на каналах промышленных стоков предприятий.

Методика расчета

Любой тепловой расчет является сложнейшим процессом, осуществить который доступно только квалифицированным специалистам. Тем не менее, можно предложить упрощенную методику, достаточную для получения результата, определяющего выбор той или иной модели агрегата.

Расчет сводится к выполнению ряда этапов:

  1. Определение величины тепловых потерь через ограждающие элементы строения – стены, потолки, чердачные помещения, окна, двери и прочее. Этого можно достичь, воспользовавшись следующей зависимостью:

Qок = S x (tвн – t нар) х (1 + ?b) x n : Rт, где

  • расчетные значения теплопроводности материалов ограждающих конструкций;
  • коэффициент рассеивания тепла с внутренних поверхностей;
  • то же, для наружных поверхностей.

После проведения предварительных вычислений определяем суммарные потери тепла от различных факторов:

Qт.пот = Qок+Qи-Qбл, где

  1. Основываясь на полученных результатах можно рассчитать потребность в электроэнергии в течение года. Для этого воспользуемся соотношением:

Qгод = 24х0,63 х Qт.пот х ((d x (tвн-tнар.ср) : (tвн-tнар)) (кВт/час) в год, где:

  • tвн- желательная величина температуры во внутренних помещениях дома;
  • t нар – фактическая наружная величина температуры;
  • tнар.ср – среднегодовая величина температуры в регионе;
  • d – протяженность отопительного периода, дней.
  1. Желая иметь более достоверное представление о теплонасосе, нужно сделать расчет величины тепловой мощности, которая понадобится, чтобы разогреть воду в системе отопления дома. Это доступно с использованием такой расчетной формулы:

Qгор.в = V x 17 кВт/ за год, где:

Рекомендуется полученный результат увеличить на 10%, учитывая более интенсивную работу системы при пиковых нагрузках. Предварительный расчет мощности теплового насоса для отопления дома позволяет сделать безошибочный выбор установки.

Для выполнения расчета можно использовать специальный калькулятор, они в изобилии представлены в интернете

Материал изготовления

Изготавливают теплообменник для котла из материалов прочных, хорошо проводящих тепло, не склонных к коррозии и достаточно устойчивых к давлению. Поскольку приходится учитывать и стоимость материала, выбор невелик.

Сталь

Стальной теплообменник дешевле в цене, но менее долговечный

Это самый доступный материал. Сталь очень прочная, но хорошо поддается обработке. Цена невелика. Плюс такого варианта – стойкость к высокой температуре. Сталь пластична и при нагреве не покрывается трещинами, не деформируется даже на участках, контактирующих с горелкой.

Стальной теплообменник на твердотопливный или газовый котел склонен к коррозии. Вода внутри трубок и продукты сгорания в камере котла разрушительно действуют на материал. Это сказывается на долговечности. Модель из стали много весит, это приводит к дополнительному расходу топлива на прогрев самого элемента.

Чугун

Материал гораздо устойчивее к коррозии чем сталь, не боится ржавчины и действия кислотных ангидридов. Срок эксплуатации достигает 50 лет. Однако чугун – сплав хрупкий, под действием температуры может растрескиваться. Чтобы избежать повреждений, чугунный трубчатый теплообменник необходимо промывать: если используется обычная вода, то 1 раз в год; если антифриз – то 1 раз в 2 года; если дистиллированная жидкость – 1 раз в 4 года.

Вес элемента из чугуна еще больше, поэтому на нагрев приходится тратить больше топлива и времени.

Медь

Медь – благородный металл, не подверженный никаким видам коррозии. Она химически инертна, отлично переносит давление. Медь лучше проводит тепло, поэтому для нагрева самого элемента и протекающей жидкости требуется меньше топлива. Вес медной модели невелик, размеры компактны при очень развитой рабочей поверхности.

Методы промывки

Есть простые вариации, практические не предусматривающие расходов, есть бюджетные с минимальными вложениями, и профессиональные – стоят намного дороже, но отличаются высокой эффективностью.

Как промыть вторичный теплообменник газового котла тем или иным способом? И когда логично применять их. Всё зависит от объёма отложений.

В самой простой ситуации достаточно механического очищения. Снаружи очищаются рёбра ВТ. В работе применяется любая твёрдая щётка, лопатка, скребок или тросик

Здесь очень важно не повредить пластины

Второй метод –промывка в специальном составе. На практике он сочетается с первым способом и следует сразу после него.

Деталь помещается в ёмкость с кислотной смесью. Вид используемой кислоты: соляная или лимонная. Подходящие пропорции: 100 грамм на 10 литров. Воды.

Кислоты можно заменять любыми препаратами от накипи. Через 30-40 минут ВТ достаётся из ёмкости. С него аккуратно стирается оставшаяся накипь.

Попутно очищается и змеевик. Здесь применяется особый ёршик из стали.

Третий метод – химический. Через ВТ прокачиваются более агрессивные вещества с применением специального насоса. Он присоединяется к патрубкам детали.

Подходящие средства для работы отражены в данной таблице:

СредстваОписаниеПропорция к воде: граммы: литрТемпература

воды

Цена средства (руб.)
Лимонная кислотаПопулярное народное средство100 : 10-1250-70°C50 – 1 пакетик.
Термагент АктивУниверсальная жидкость с мощным эффектом1 : 940-50°C1500 – канистра на 10 кг.
STEELTEX CooperОдин из самых эффективных препаратов, но годится для работы с деталями из лёгких сплавов1:6 до 1:1040-60°C1300 – ёмкость на 5 кг
DetexКонцентрат с эффективными биологическими веществами. Превосходно очищает стальные, чугунные и медные детали200-500 :1040-50°C4900 – канистра 10 л.
Соляная кислотаЭффективно убирает сильную накипь100 : 1050-70°C50 – 1 кг

В ёмкость со смесью почти до самого дна кладётся шланг, одной стороной присоединённый к ВТ, а второй – к насосу. Так получается необходимая циркуляция. Процедура длится 30-40 минут. Затем деталь тщательно промывается обычной водой.

Четвёртый метод не предусматривает извлечение компонента. Это гидродинамическая промывка вторичного теплообменника газового котла. Но её осуществляют только профессионалы. Здесь требуется специальная технология и соблюдение критериев безопасности.

Это самый эффективный метод, мягко убирающий все отложения и вычищающий деталь до торгового вида.

  • регионом,
  • мощности и модификацией котла,
  • наценкой компании,
  • применяемой техники и химикатов.

В Москве и центральном регионе клиенты за услуги платят порядка 3 500-9 000. В Питере – 3000 – 7000 руб. В других регионах: 1700 – 4500 руб.

Паяные теплообменники

Пластинчатые паяные теплообменники – оптимальный вариант для частных коттеджей и домов. Пластины выполнены из нержавеющей стали, а припой – из никеля или меди.

Изделия предназначены для работы в условиях при рабочей температуре -180 + 200 °С, максимальном давлении – 45 бар. Это метод организации теплого пола, системы горячего водоснабжения и отопления.

Паяный пластинчатый теплообменник подходит для горячего водоснабжения и отопления

1. Устойчивость к нагрузкам.

2. Компактные размеры.

3. Невысокая стоимость.

4. Возможность отключить систему, если нет потребности в отоплении.

Недостатки отечественных паяных теплообменников:

1. Не подходят для технологических процессов, где используются агрессивные жидкие среды с механическими примесями.

2. Соединение с помощью пайки не позволяет разобрать конструкцию для полной очистки и обслуживания.

3. Из-за небольшой толщины перегородок, скрепленных припоем, теплообменник быстро изнашивается.

4. Наличие строгих ограничений по скорости выхода в рабочий режим.

Импортным производителям удалось избавиться от ряда минусов. Иностранные паяные теплообменники могут эксплуатироваться в течение 20 лет.

Жесткая система контроля на иностранных предприятиях гарантирует отсутствие протечек в конструкции. Установки выдерживают длительные температурные нагрузки и гидравлические удары.

Теплообменник с припоем из никеля предназначен для работы с агрессивными средами; припой из меди больше востребован для организации системы кондиционирования и теплоснабжения.

Виды пластинчатых теплообменных аппаратов и их применение

По способу соединения теплообменных пластин теплообменник может быть:

  • разборной;
  • паяный;
  • полусварной;
  • сварной.

Конструкция и принцип работы разборных пластинчатых ТО были описаны выше. Рассмотрим более подробно особенности конструкции и область применения паяных, полусварных и сварных теплообменников.

Паяный пластинчатый теплообменник

Агрегат широко используется для:

  • нагрева и охлаждения рабочих сред;
  • испарения;
  • конденсации;
  • утилизации и рекуперации тепловой энергии.

Теплообменные пластины ППТО изготавливаются из нержавеющей стали. Сборка пакета осуществляется аналогично с разборными теплообменниками, после чего производится пайка медным или никелевым припоем, в зависимости от агрессивности рабочей среды: для более агрессивных сред используется никель.

К наиболее существенным преимуществам паяных ПТО можно отнести:

  • высокую надежность;
  • возможность работы в широком температурном диапазоне;
  • легкость и небольшие габариты;
  • надежность конструкции;
  • простоту монтажа и технического обслуживания;
  • доступную стоимость.

Особенно хорошо паяные ПТО зарекомендовали себя в холодильных и замкнутых отопительных системах.

Полусварные пластинчатые теплообменники

Главной конструктивной особенностью полусварных теплообменников является попарное сваривание штампованных пластин, в результате чего формируется отдельный герметичный модуль. Сборка ПСПТО осуществляется также, как и разборного теплообменника, различие состоит в том, что вместо отдельных пластин используются готовые сварные модули.

Между первичными и вторичными модулями устанавливаются прокладки из термостойкой резины. Отсутствие внутренних прокладок позволяет существенно увеличить рабочее давление в системе и температуру рабочей среды.

Благодаря высоким эксплуатационным характеристикам ПСПТО получили широкое распространение следующих областях:

  • в системах вентиляции и кондиционирования;
  • в химическом и фармацевтическом производстве;
  • в пищевой промышленности;
  • в системах рекуперации;
  • в отопительных системах;
  • в системах централизованной подачи горячей воды.

Среди наиболее значимых преимуществ данной конструкции можно выделить:

  • широкий диапазон рабочих температур;
  • отсутствие герметизирующих прокладок;
  • инертность к агрессивным рабочим средам;
  • простоту монтажа и технического обслуживания.

В отличии от сборных ПТО, полусварные агрегаты практически полностью исключают возможность неправильной сборки.

Сварные пластинчатые теплообменники

Отсутствие уплотнений является главной особенностью конструкции сварных теплообменных аппаратов. Гофрированные пластины сварены в один блок, в котором рабочая среда протекает по внутренним каналам, а нагреваемая – по внешним.

Применяются СПТО при работе с агрессивными средами при повышенных температурах и высоком давлении рабочих сред.

Конструктивные особенности сварных теплообменников обеспечивают следующие преимущества:

  • компактность;
  • высокий коэффициент теплопередачи;
  • незначительные теплопотери;
  • простоту технического обслуживания.

Отсутствие уплотнений в сварных ПТО обеспечивает полную герметичность рабочих каналов, что позволяет работать в экстремальных условиях.

Схемы подключения

Теплообменник может подключаться к системам отопления и водоснабжения по трём разным схемам: параллельной, двухступенчатой смешанной и двухступенчатой последовательной.

Параллельная

Наиболее простая в реализации и экономная схема. Обязательным условием является установка температурного регулятора. Недостатками являются не самое экономичное расходование тепла носителя, а также необходимость увеличенного трубопровода.

Двухступенчатая смешанная

Также требует регулятора температур. Значительно экономичнее параллельной схемы в плане потребления тепла. Однако сама по себе конструкция стоит дороже, так как требует сразу двух теплообменников. Оборудование необходимо подбирать очень точно в соответствии с конкретными условиями.

Двухступенчатая последовательная

При таком подключении входящий поток делится на два, один проходит через регулятор, а второй через нагреватель. Носитель тепла расходуется более эффективно по сравнению со смешанной. Также более эффективно распределяется нагрузка на сеть.

Минусом схемы является невозможность полной автоматизации. Несмотря на все преимущества, на практике схема используется редко из-за сильного влияния отопительной и водопроводной систем друг на друга и возможности перегрева отопительной сети.

Широкие возможности кожухотрубного теплообменника

  1. Давление в трубках может достигать разных значений, от вакуума до наивысших;
  2. Можно достичь необходимого условия по термическим напряжениям, при этом цена устройства существенно не поменяется;
  3. Размеры системы тоже могут быть различными: от бытового теплообменника в ванную комнату до промышленного площадью 5000 кв. м.;
  4. Нет необходимости предварительно очищать рабочую среду;
  5. Для создания сердцевины используют разные материалы, в зависимости от затрат на производство. Однако все они соответствуют требованиям температуры, давления и устойчивости к коррозии;
  6. Отдельный участок труб можно извлечь для чистки или ремонта.

Есть ли у конструкции недостатки? Не без них: кожухотрубчатый теплообменник весьма громоздкий. Из-за своих габаритов он нередко требует отдельного технического помещения. Ввиду большой металлоемкости стоимость изготовления такого устройства тоже велика.

Выбор промышленного теплообменного оборудования

Для эффективного выполнения задач в промышленности теплообменник должен соответствовать требованиям технологического процесса:

  • возможность регулирования и поддержания температуры рабочей среды;
  • соответствие скорости циркуляции продукта необходимой минимальной продолжительности пребывания агента в системе;
  • устойчивость материала теплообменника к воздействию рабочей среды;
  • соответствие устройства давлению теплоносителя.

Второй важный критерий отбора – экономичность и производительность прибора, сочетание высокой интенсивности теплообмена с сохранением необходимых гидравлических показателей устройства.

Эксплуатация разных видов теплообменных устройств в промышленности

Применение теплообменников может быть построено по следующим направлениям:

  • использование остаточного тепла для генерации электрической энергии;
  • точная регулировка температуры во время химических процессов;
  • вторичное использование энергии для бытовых потребностей;
  • поддержание температуры в бытовых системах отопления в стандартизированных параметрах.

Исходя из поставленных задач, можно выбрать оптимальную модель прибора по мощности, конструкции и иным параметрам.

Пластинчатый теплообменный аппарат

Оборудование с пластинами может быть использовано в разных отраслях промышленности, в том числе пищевой. Его использование экономически целесообразно при пастеризации молока и сока, которое происходит в три шага. Подогретый на третьей стадии раствор используется как горячий теплоноситель для подогрева на двух остальных этапах. Это позволяет значительно экономить ресурсы.

Не менее распространены пластинчатые модели при обогреве паром с низким давлением. Данный прибор не пригоден для функционирования в условиях высокого давления из-за большой вероятности разгерметизации уплотнительных прокладок между пластинами.

Принципиальная схема пластинчатого теплообменного аппарата 1,3,5 – нечетные пластины; 2,4 – четные пластины; I – вход и выход первого теплоносителя; II – вход и выход второго теплоносителя

Труба в трубе

Оборудование, которое имеет небольшую площадь теплообмена и применяется только в установках малой мощности для передачи энергии в средах «газ-жидкость».

Схема теплообменного аппарата “труба в трубе” 1 – внутренняя труба; 2 – наружная труба; 3 – изогнутая соединительная труба; 4 – соединительные патрубки

Спиральные конструкции

Приборы применяются для взаимодействия рабочих сред «жидкость-жидкость». В качестве агента нередко выступает пар.

Основное назначение теплообменника: конденсаторы пониженного давления. Если теплоноситель имеет твердые частицы, волокна и иные примеси, прибор устанавливают в горизонтальном положении для предотвращения скапливания веществ в нижней части установки.

Схема спирального теплообменника

Элементные модели

Теплообменник представляет собой нескольких секций, объединенных в одну конструкцию. Его активно эксплуатируют, когда необходимо работать с высоким давлением, или теплоносители циркулируют с одинаковой скоростью без изменения агрегатного состояния.

Кожухотрубный аппарат

Установка, в которой теплоносители движутся по трубам и в межтрубном пространстве. Для увеличения скорости процесса предусмотрены решетки и перегородки. Область применения: промышленность и транспортная сфера для нагрева, охлаждения и конденсации газообразных и жидких сред.

Витые приборы

Установки участвуют в разделении газовых смесей путем глубокого охлаждения в приборах высокого давления. Один из главных недостатков конструкции – трансформация под действием температурного напряжения.

Схема витого теплообменника

Графитовые теплообменные установки

Это незаменимое оборудование на ряде предприятий. Материал устройства устойчив к коррозии и отличается высокой теплопроводностью.

Схема графитового теплообменника

Монтаж в систему

Поскольку внутренний теплообменник подключается к системе одновременно с котлом отопления, необходимо отдельно рассмотреть только установку внешних устройств. Эта операция не отличается сложностью. Необходимо только проконтролировать, чтобы на входном и выходном отверстии прибора присутствовала резьба. Иначе придется отдельно озаботиться в ее нарезании.

Подключение теплообменника в сеть, требует его закрепления на стене. Если используется чугунная конструкция, то крепления подбираются с особой прочностью. Лучше всего применить специальную консоль.

Для врезки в систему используют специфические муфты, которые также понадобятся, если возникнет желание обеспечить конструкцию дополнительными фильтрами для воды. В некоторых случаях их устанавливают сразу два. Такой расклад применяют для старых систем отопления.

Еще понадобятся стандартные краны и американки. Последние состоят из двух фитингов с резьбой, прокладки и накидной гайки.

Что это такое?

Теплообменник представляет собой устройство, предназначенное для обмена теплом между двумя или более не связанными друг с другом напрямую носителями тепла. Чаще всего используется для нагрева воды напрямую от системы отопления. Это позволяет существенно экономить на отоплении и электроэнергии, так как позволяет не тратить на нагрев воды дополнительную энергию, как в случае с электрическим или газовым водонагревателем.

Теоретически, можно рассмотреть вариант использования воды напрямую из отопительной системы, так как её качество не сильно отличается от воды, продающейся в супермаркетах. Однако, на практике, использовать её в бытовых целях нельзя.

Обусловлено это следующими причинами:

  1. Замена воды в отопительных трубах – процесс затратный и требует денег.

  2. Вливание новой воды отрицательно влияет на котлы, способствует быстрому изнашиванию системы.
  3. В отопительных системах зачастую используются химические примеси, призванные смягчить воду.
  4. Трубы в этих системах сами по себе имеют внутри себя множество отложений, стандарты их использования рассчитаны на техническую воду, а не на потребляемую человеком в пищу.

По вышеназванным причинам, использование воды напрямую из отопительных труб в бытовых и пищевых целях не представляется возможным, и для нагрева воды от тепловой системы обязательно использование теплообменника.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий