Какие преимущества и особенности имеет фреон R407C

Область V — Граничная область.

В 90% случаев приходится работать именно в этой области, так как сжиженный газ, не поддавленный инородным газом, находится в состоянии кипения.

Давление газа соответствует давлению насыщенных паров при данной температуре, кавитационный запас на уровне границы раздела фаз строго равен НУЛЮ.

Располагаемый кавитационный запас системы на входном патрубке насоса определяется высотой столба жидкости относительно входного патрубка минус потери на входном трубопроводе.

В этой области допускается как применение жидкостных насосов так и компрессоров, однако применение жидкостных насосов в этой области связано с преодолением определенных трудностей.

Типичная проблема при эксплуатации ЖИДКОСТНЫХ НАСОСОВ при подаче сжиженных газов — насос не качает, срывает поток.

Проблемы возникают по причине ошибок в проектировании (редкие, но очень болезненные случаи), из-за ошибок при обвязке насоса по месту, эксплуатации насоса.

Основная причина проблем — частичный или полный переход перекачиваемой среды в газовую фазу в области входного штуцера и/или рабочей камеры жидкостного насоса, кавитационный срыв потока.

Применять жидкостные насосы в этой области надо крайне осторожно, по возможности рекомедуется применять дожимные компрессоры или насос-компрессоры. Достаточно часто на практике мы встречаемся с применением жидкостных насосов в этой области, так как это наиболее экономически эффективное решение (иногда единственное возможное при применении оборудования Haskel). Пример: Подача сжиженного газа в процесс под давлением, превышающим давление на входе в 36 и более раз

Пример: Подача сжиженного газа в процесс под давлением, превышающим давление на входе в 36 и более раз

Достаточно часто на практике мы встречаемся с применением жидкостных насосов в этой области, так как это наиболее экономически эффективное решение (иногда единственное возможное при применении оборудования Haskel). Пример: Подача сжиженного газа в процесс под давлением, превышающим давление на входе в 36 и более раз.

Если Вам приходится эксплуатировать жидкостные насосы в этой области рекомендуем учесть следующие рекомендации:

  • Предусмотрите линию сброса газа на нагнетании насоса — это позволит Вам предварительно заполнить насос жидкой фазой перед пуском насоса
  • Обеспечьте максимальный кавитационный запас системы NPSHa — превышение давление на входе в насос над давлением насыщенных паров, для этого:
  • По возможности уберите местные сопротивления на входной магистрали: запорные, регулирующие клапаны, фильтры, сужения потока, резкие повороты потока.
  • При выборе места установки насоса нужно помнить, что труба — не только источник дополнительного сопротивления, но и источник подвода теплоты. Устанавливайте насос как можно ближе к питающему резервуару, обеспечьте теплоизоляцию всасывающего трубопровода.
  • Устанавливайте насос как можно ниже уровня резервуара, в идеале — на нижних этажах, в подвале и проч. Каждый метр заглубления насоса ниже уровня жидкости в резервуаре значительно снижает риск разрыва потока на входе.
  • По возможности обеспечьте постоянный расход через насос, при низкой скорости потока и особенно при остановке насоса жидкость успевает нагреваться за счет теплообмена с окружающей средой что приводит к срыву потока.
  • Обеспечьте наилучшие кавитационные характеристики насоса:
  • Применяйте по возможности двухплунжерную конструкцию, исплонения для отключения пневматического привода на цикле всасывания.
  • По возможности ограничивайте скорость насоса, особенно на цикле всасывания.

Если все вышеперечисленное не помогло:

  • Обеспечьте местное охлаждение входного трубопровода непосредственно перед входным штуцером насоса.
  • Поставьте один или несколько дожимных компрессоров или насос-компрессоров перед насосом. Установки с компрессором первой ступени и насосом второй ступени обычно сводят риск срыва потока к нулю.

Применение фреона

Применяют фреон в качестве хладагента благодаря его физическим свойствам — при испарении он поглощает тепло, а затем выделяет его при конденсации. Принцип работы следующий: в холодильном оборудовании фреон в газообразном состоянии при помощи компрессора извлекается (высасывается) из испарителя, сжимается в механически уменьшаемом объёме (в поршневом компрессоре в цилиндре — поршнем), с одновременным нагревом и транспортируется в конденсатор. Там фреон остывает до температуры воздуха окружающей его среды и переходит в жидкое состояние. Жидкий фреон через дросселирующее устройство (капиллярную трубку или Терморегулирующий Вентиль — ТРВ) перетекает в испаритель, расширяется за счет низкого давления после дросселирующего устройства, и вновь переходит в газообразное состояние. Процесс расширения сопровождается поглощением большого количества тепла, вследствие чего стенки испарителя (ёмкости в которой кипит и испаряется фреон) охлаждаются, понижая температуру воздуха внутри охлаждаемого объема.

    Цикл повторяется до тех пор, пока температура стенок испарителя не опустится до значения, заданного терморегулятором, после чего терморегулятор размыкает электрическую цепь компрессора и он прекращает работу. Через некоторое время, под воздействием различных факторов, воздух в холодильной камере нагревается, и терморегулятор снова включает компрессор.       Применяется фреон, как хладоноситель в любом холодильном оборудовании и кондиционерах с 1931 года (до этого использовался вредный для здоровья аммиак). Так же благодаря его термодинамическим свойствам, хладагент применяется в парфюмерии и медицине для создания аэрозолей. Широко используют фреон при тушении пожара на опасных объектах.

Приобрести фреон в Самаре быстро и недорого можно обратившись к нам. Все самые распространенные типы фреонов в большом количестве имеются на нашем складе.

Диагностика и дозаправка

Ford Focus Hatchback ,, синий ,, Бортжурнал антибактериальная обработка кондиционера Определить утечки и сколько фреона в кондиционере осталось может специалист с помощью специального оборудования. Основным показателем количества газа в системе является его давление. Проверяют давление при помощи манометрической станции.

Как правило, такую проверку осуществляют в теплое время года со стороны всасывания, т.е по синему манометру. Шланг от прибора подключается к сервисному вентилю, расположенному на стороне всасывания, и запускается кондиционер. Через 10-15 минут на манометре будут корректные показания.

Таблица давлений фреона в кондиционере для конкретной марки устройства находится на внешнем блоке климатической техники.

  • Discharge side – это рабочее давление на стороне нагнетания.
  • Suction side – это показатель рабочего давления на стороне всасывания.

Следует учесть, что показатели давления меняются в зависимости от температуры окружающего воздуха и температуры в помещении. Ниже представлены таблицы зависимости давления от температуры воздуха для наиболее востребованных в климатической технике газов.

Многие владельцы климатической техники задают вопрос, как определить какой фреон в кондиционере, когда и сколько его необходимо заправлять?

Для того чтобы узнать тип применяющегося газа следует внимательно посмотреть на заводскую маркировку, которая находится на внешнем блоке устройства.

В строке с надписью Refrigerant находится марка хладагента, использующаяся в конкретной модели климатической техники. В нашем случае это R22.

Заправку следует осуществлять при следующих признаках:

  • Из внутреннего блока не поступает охлажденный воздух при работающем аппарате.
  • На трубках появляется наледь.

Дозаправка сплит-системы также потребуется при переустановке климатической техники и после ремонта компрессорного блока.

Определенных норм заправки бытовых сплит-систем не существует. Специалист ориентируется по показаниям манометрической станции, весов и на основании собственного опыта. Именно поэтому для заправки климатической техники необходимо приглашать только квалифицированных специалистов, которые дают гарантию на выполнение своих работ.

Многие спрашивают: сколько стоит заправка кондиционера фреоном. Стоимость заправки кондиционера редко бывает фиксированной. Цена включает в себя стоимость работ плюс стоимость хладагента. Кроме этих факторов на ценообразование играет конкуренция и доброе имя компании.

Средняя стоимость заправки кондиционера в Москве:

  • R22 заправка – 1500 руб. работа + стоимость газа, из расчета 300 руб.100 грамм газа.
  • R410А заправка – 1500 руб. работа + стоимость газа, из расчета 500 руб. 100 грамм хладагента.

В самостоятельной заправке сплит-системы хладагентом нет ничего сложного и страшного. Достаточно иметь оборудование и некоторые знания. Но следует понимать, что в результате неправильной заправки сплит-система может выйти из строя. Стоимость услуг с гарантией качества значительно ниже цены нового кондиционера, поэтому работу по заправке (дозаправке) кондиционера лучше всего доверить профессионалам.

Особенности применения


Хладон одинаково эффективен в сплит системах и чиллерах с винтовым компрессором и водяным конденсатором. Сжиженный газ высокого давления требует специальных узлов и деталей. Ведется конструктивная разработка новых моделей климатической и холодильной техники. Технические характеристики позволяют использовать его в устройствах:

  • центробежные компрессоры;
  • затопленные испарители;
  • насосные холодильные агрегаты.

Новый фреон нашел применение в системах кондиционирования, бытовых теплонасосных установках. Смесь с азеотропными свойствами подходит для оборудования с теплообменниками непосредственного испарения и затопленного типа. Благодаря высокой плотности хладон используют в бытовых и промышленных установках:

  • транспортные охладительные системы;
  • установки кондиционирования воздуха в офисах, общественных зданиях, промышленных объектах;
  • бытовые холодильники;
  • торговое и пищевое холодильное оборудование.

Совместно с фреоном 410 a применяется синтетическое (полиэфирное) масло. Недостаток продукта – высокая гигроскопичности. При дозаправке исключается контакт с влажными поверхностями. Рекомендуется применение продукции марок PLANETELF ACD 32, 46, 68, 100, Biltzer BSE 42, Mobil EAL Arctic. Минеральные масла не совместимы с хладагентом, их применение испортит компрессор.

Хладагенты R134a и R407C

R134a используется чаще вчиллерах, как охладитель для кондиционеров он не подходит по термодинамическим свойствам. Обычно его используют в соединении с R32 (23%), R125 (25%).  R32 – увеличивает производительность, R125 снижает горючесть, сам R134а (52%) отвечает за рабочее давление в контуре.

Такая смесь работает под маркой R407C.

R407C обладает всеми свойствами R22. Ему присуща: низкая токсичность, химическая стабильность, не горючесть и пожарная безопасность. Отличия R407C от прототипа  R22 в величине рабочих давлений, типе используемых масел.  При заправке 407 маркой рабочее давление выше, чем при заправке 22.

Для марки 407С не подходит минеральное масло, используемое в сочетании с маркой 22 – оно расслаивается на фазы и плохо смазывает компрессор, что приводит к быстрому износу техники. Для R407C используется эфирное масло, имеющее недостаток: он поглощает влагу, что недопустимо в работе системе кондиционирования.

Учитывая все характеристики и свойства названных хладагентов можно говорить о несовершенстве каждой из марок. Одни имеют хорошие производственные характеристики, но высокую экологическую опасность, другие безопасны, но по рабочим характеристикам значительно уступают предыдущим.

Физические свойства R407c

Параметр Единица измерения Значение
При -15°С (насыщ.жидк.) При 25°С (насыщ.жидк.) При 25°С (насыщ.пар)
Химическая формула CHF2CF3+CH2F2+CH2FCF3 R125+R32+R134a 25%+23%+52% (масс.)
Молярная масса кг/кмоль 86.2
Температура кипения при атм. давлении (101кПа) °С -43.8
Критическая температура °С 86.0
Критическое давление МПа 4.63
Критическая плотность кг/м3 490
Вязкость мПа·с 0.249 0.152 0.0125
Теплопроводность Вт/(м·К) 0.103 0.085 0.0154
Средняя уд.теплоемкость кДж/(кг·К) 1.533 1.107
Отношение cp/cv 1.33
Плотность кг/м3 1138 43.80
Энтальпия испарения кДж/кг 182.6

Границы взравоопасности в воздухе при 25°С и атмосферном давлении (101кПа): отсутствуют.

История фреонов и их применения в кондиционерах

В 1902 году талантливый инженер Уиллис Хэвиленд Кэрриер разработал первый в мире кондиционер, предназначавшийся для осушения воздуха в типографии Бруклина. Ровно сто лет назад, в 1910 году, был придуман первый домашний холодильник. Комнатный кондиционер был изобретен в 1929 году, причем из-за опасности испарений хладагента компрессор и конденсатор кондиционера были вынесены на улицу, то есть фактически это была первая сплит-система. Пионером в этой области стала компания Томаса Эдисона, General Electric, которой удалось выпустить свой продукт раньше конкурентов из Carrier.

В качестве хладагента в первых кондиционерах использовался аммиак. Он широко распространен в природе, даже человеческий организм в состоянии синтезировать это вещество. Однако высокие концентрации аммиака опасны для человека, к тому же он горюч. Поскольку найти квалифицированного монтажника тогда было куда сложнее, чем сейчас, да и инструмент у специалистов того времени был не очень совершенным, утечки аммиака и других популярных тогда хладагентов — диоксида серы и хлористого метила — были нередки, что приводило к несчастным случаям. В итоге люди начали бояться домашних холодильников и выставлять их на улицу. Смельчаков же, решившихся поставить дома кондиционер, в конце 20 х годах вообще почти не было.

Незадолго до начала Великой депрессии компании General Motors и DuPont начали разработку безопасного для человека хладагента. В 1928 году Томас Миджли-младший из Frigidaire, дочерней компании General Motors, синтезировал «чудо-вещество», которое получило название «фреон». Некоторые источники относят изобретение фреона к 1931 году, однако это неверно: уже в 1930 году DuPont и General Motors основали фирму Kinetic Chemical Company, основным профилем которой должно было стать как раз производство фреона. Первый патент на хлорфторуглерод, US#1,886,339, был получен Frigidaire 31 декабря 1928 года, а в 1930 году Томас Миджли провел эффектную презентацию нового вещества: он вдыхал полные легкие фреона и выдыхал газ на свечу. Изобретатель оставался жив, а свеча гасла, что демонстрировало нетоксичность и пожарную безопасность нового хладагента.

Неудивительно, что в 1930-х годах начался холодильный и кондиционерный бум. За один только 1935 год в США удалось продать восемь миллионов бытовых фреоновых холодильников, а самих фреонов к этому времени было уже несколько десятков. Новые безопасные для человека хладагенты стали настоящей находкой для зарождающегося сектора промышленности. О вреде для атмосферы тогда почти никто не думал… Впрочем, более чем за 30 лет до обнаружения проблем с озоновым слоем тот же Томас Миджли предположил, что, влияя на озоновый слой, можно управлять климатом. Судьба самого изобретателя, к сожалению, оказалась трагичной. В 1940 году он тяжело заболел и, чтобы вставать и передвигаться без посторонней помощи, вынужден был создать приспособление из веревок и роликов. В 1944 году он трагически погиб, запутавшись в веревках.

Изобретенному им веществу повезло больше. В течение вот уже почти ста лет различные группы галогеналканов, называемые фреонами, работают почти во всех холодильных контурах по всему миру. Конечно, это уже не фреон-11, который когда-то был придуман талантливым химиком, но у всех этих веществ – общие корни.

О том, как менялись фреоны с течением времени и какие ограничения налагаются сейчас на их использование – читайте далее.

Классификация и номенклатура фреонов

В мире принято обозначать все хладоны буквой R (от английского refrigerant – хладагент) с цифрами, первоначально обозначавшими количество атомов того или иного вещества в молекуле. Международный стандарт ISO № 817-74 (его нормы дублированы в отечественном ГОСТ 29265-91) определяет правила маркировки хладонов так:

  • первая цифра справа – это числа атомов фтора в соединении;
  • вторая цифра справа – это число атомов водорода в соединении плюс единица;
  • третья цифра справа – это число атомов углерода в соединении минус единица (для соединений метанового ряда ноль опускается);
  • число атомов хлора в соединении находят вычитанием суммарного числа атомов фтора и водорода из общего числа атомов, которые могут соединяться с атомами углерода;
  • для циклических производных в начале определяющего номера ставится буква C;
  • в случае, когда на месте хлора находится бром, в конце определяющего номера ставится буква B и цифра, показывающая число атомов брома в молекуле.

Так, например, популярный когда-то R12 имеет два атома фтора, не содержит водорода (1-1 = 0), один атом углерода (0+1 = 1), а поскольку валентность углерода равна 4, и две связи заняты атомами фтора, остается два атома хлора. Таким образом, получаем химическую формулу R12 – CF 2 Cl 2.

По химическому составу и степени воздействия на озоновый слой хладоны классифицируются следующим образом:

ГруппаКласс соединенийРаспространенные фреоны, входящие в группуВоздействие на озоновый слой
AХлорфторуглероды (ХФУ, HFC) R11, R12, R13, R111, R112, R113, R114, R115Вызывают серьезное истощение озонового слоя,
применение запрещено Монреальским протоколом
Бромфторуглероды R12B1, R12B2, R113B2, R13B2, R13B1, R21B1, R22B1, R114B2
B Гидрохлорфторуглероды (ГХФУ, HCFC) R21, R22, R31, R121, R122, R123, R124, R131, R132, R133, R141, R142, R151, R221, R222, R223, R224, R225, R231, R232, R233 Вызывают слабое истощение озонового слоя,
применение ограничено Монреальским протоколом
C Гидрофторуглероды (ГФУ, HFC) R23, R32, R41, R125, R134, R143, R152, R161,R227, R236, R245, R254 Озонобезопасные фреоны,
не попадают под Монреальский протокол

Однако экологические и химические свойства фреонов – не единственные их характеристики. Важны и их физические свойства: температура кипения, критические температура и давление и другие. Именно эти свойства определяют, подойдет хладагент для решения конкретной задачи или нет. В таблицу ниже сведены некоторые основные свойства популярных хладагентов, включая их «климатические» коэффициенты – озоноразрушающий потенциал (ОРП, ODP) и потенциал глобального потепления (ПГП, GWP). В основном в таблицу включены фреоны группы ГФУ (С), так как группы ХФУ и ГХФУ в скором времени будут выведены из обращения. Т кипения – температура кипения при атмосферном давлении, Т критическая – температура, выше которой жидкая фаза хладагента существовать не может. В столбце «горючесть» NF означает Non flammable, то есть негорючий, LF – low flammable, то есть слабогорючий.

Характеристики фреона R410a на линии насыщения

Насыщенная жидкость

ТемператураДавлениеПлотностьЭнтальпияЭнтропия
° Снасыщения, МПакг/м3кДж/кгкДж/(кг*К)
-501.1231339.761131.40.726
-451.4171325.036137.80.754
-401.771309.941144.20.782
-352.1911294.45150.70.809
-302.6891278.534157.30.837
-253.2731262.1621640.864
-203.9541245.297170.90.891
-154.7431227.897177.90.918
-105.6511209.914185.10.945
-56.691191.292192.50.973
7.8721171.9682001
59.2111151.863207.71.028
1010.7191130.887215.71.055
1512.411108.928223.91.084
2014.2991085.849232.51.112
2516.3991061.481241.31.141
3018.7251035.603250.51.171
3521.2931007.926260.21.202
4024.116978.057270.41.233
4527.211945.435281.21.266
5030.592909.218292.81.301

Насыщенный пар

ТемператураДавлениеПлотностьЭнтальпияЭнтропияТеплота
° Снасыщения, МПакг/м3кДж/кгкДж/(кг*К)парообразования, кДж/кг
-501.1224.526401.51.936270.1
-451.4155.616404.61.924266.8
-401.7676.909407.51.913263.4
-352.1878.435410.51.902259.8
-302.68310.224413.31.891256
-253.26512.312416.11.882252
-203.94414.738418.81.872247.8
-154.7317.546421.31.863243.4
-105.63520.785423.81.854238.7
-56.6724.511426.11.846233.6
7.84928.79428.31.837228.3
59.18433.696430.21.829222.5
1010.68839.3174321.821216.3
1512.37545.759433.61.812209.6
2014.2653.149434.81.803202.4
2516.35761.643435.81.794194.5
3018.68171.44436.41.785185.9
3521.24782.798436.61.774176.4
4024.0796.062436.21.763165.9
4527.165111.722435.21.75154
5030.549130.504433.41.736140.6

Температура кипения фреона 410

Температура, ° СДавлениеТемпература, ° СДавление
+5029.5-104.72
+4526.2-153.85
+4022.9-202.98
+3519.78-252.35
+3016.65-301.71
+2515-351.22
+2013.35-400.73
+1511.56-450.25
+109.76-500.08
+58.37-55-0.22
6.98-60-0.36
-55.85-65-0.51

Причины перехода на новый вид хладагента

Поспособствовали тому следующие
факторы:

       Состояние озонового слоя. Сейчас есть даже такое
понятие как «ODP» – Ozone depletion potential. В переводе на
русский – потенциал разрушения озонового слоя. Он определяет силу негативного
воздействия хладагентов на стратосферу. Величина ODP относительна,
при этом фреон и R11 имеют
одинаковую массу, поэтому им присваивается цифра «1». Данный показатель для R32 – 0;

Евросоюз не запрещает использование фреонов R410A, R134A, R32 и аналогичных, так как в них, в отличие от R22, не содержится хлор, известный своим негативным воздействием
на атмосферу. Начиная с 2004 года действуют правила, запрещающие установку
климат-оборудования, работающего с «вредными» фреонами, а с 2015 и с
R22.

  • Глобальное потепление (потенциал «GWP» – Globalwarmingpotential). Он отражает то,
    каким образом хладагенты, попавшие в атмосферу, могут влиять на мировую проблему,
    связанную с потеплением. Как и в предыдущем случае, величина потенциала
    относительна. Для определения вредного воздействия берется 1 кг фреона и 1 кг CO2 (диоксида углерода),
    сроком на 100 лет. В сравнении со «старыми» хладагентами, GWPу R32 на порядок ниже. К
    примеру, эта цифра для R410A –
    2087,5, а для R32 –
    675;
  • Эквивалент CO2. Данный параметр также отражает влияние на внешнюю среду. Для
    его определения перемножают число фреона (в кг) на потенциал GWP. Кондиционеры, работающие с R32 не обладают высоким CO2-эквивалентом, поэтому,
    даже случись аварийный выброс, они безопасны для экологии с точки зрения
    глобального потепления;

Стоит заметить, что количество F-газов (фторсодержащих)
всего 2% от общего числа вырабатываемых сейчас парниковых газов. Несмотря на
это ЕС способствует созданию оборудования, которое бы имело низкий эквивалент
диоксида углерода. Чтобы сократить количество выбросов, выпускаемая
климатическая техника должна работать с хладагентами, потенциал
GWPкоторых низок. Этому уже дали
развитие, так, начиная с 2025 года параметр
GWPдля сплит-систем (с загрузкой не более 3 кг) не должен
превышать 750.

  • Воспламеняемость. Сегодня R32 считается наиболее трудновоспламеняемым
    фреоном. Он не вступает в реакции с искрами от бытовой электроники, не «боится»
    статического тока. Значение предела воспламеняемости – 0,306 кг/м3,
    и R32 не станет
    возгораться даже если он ниже. Независимо от факта, что эффективный хладагент
    практически не горюч, при его транспортировке, установке и эксплуатации
    кондиционеров требуется соблюдение техники безопасности и строгое следование
    инструкциям;
  • Огнеопасность. Стандарт ISO 817, созданный в 2014 году,
    утверждает, что существует 4 класса огнеопасности, действующие для фреонов: 1,
    2L, 2, 3, где 1 – не
    поддерживающие горение, 3 – высокоопасные. Класс хладагента R32 – 2L;
  • Токсичность. По этому параметру R32 аналогичен R410A, то есть малотоксичен. Благодаря
    слабогорючести и малотоксичности он лучше всего подходит для бытовых
    сплит-систем;
  • Цена. Стоит он относительно недорого, что не
    станет причиной подорожания техники, использующей фреоны нового поколения (цена
    аналогична моделям кондиционеров с R410A);
  • Параметр энергоэффективности. R32 более вязкий, в сравнении с
    предшественниками, поэтому не становится причиной потери давления в контурах
    сплит-системы, из-за чего энергия расходуется попусту. R32 на 5% эффективнее R410A. Сам параметр энергоэффективности применим для многих видов
    бытовой техники и выражается буквами: от Aдо G. К примеру, новая серия кондиционеров HaierElegantDC-InverterHP, которые работают на R32, относятся к классу A. Встречаются модели с
    классом A+, A++, A+++, где «плюс» говорит о применимых
    технологиях, повышающих энергоэффективность;
  • Экономичность. Сплит-система требует меньшее
    количество R32, в
    сравнении с R410A. Это позволило уменьшить
    габариты изготавливаемой климатической техники. К тому же, новый фреон –
    однокомпонентное вещество, что подразумевает подзаправку.

Метки: баллон от фреона, переносной ресивер

Комментарии 41

Привет. Подскажи по поводу баллонов из под фреона. Что то не получается отвернуть вентиль на фреоновом баллоне. Может есть какая то «фишка»? Просто проворачивается против часовой на полоборота и все

Хорошая идея — ведро компрессии с собой таскать )) Я себе с десяток баллонов прикупил занедорого (примерно 425 рублей за все). Компрессор буду делать: есть всё — и двухпоршневая башка, и движки, надо найти время и собрать в кучу.

шикарно, у нас типо продают за 1 шт. 400 р. мечтают.

а где их взять такие ?

Я взял у знакомого, который занимается кондиционерами.

Дымогенератор тоже получается не плохой. www.drive2.ru/b/2718423/

неплохая коптильня из таких баллонов выходит, холодного копчения ) летом хочу сварганить, пока баллонов пустых нету)

Коптильня а…ительная должна получится! Спасибо за идеи.

У нас на работе урна была из такого балона

А я прямо на краник болона установил быстросьем! шланг лишнее! Пневмоинструмент на выезд брать удобно!

У меня не было быстросъема с подходящей резьбой, зато были под шланг.

а на 8 марта можно сделать косметичку для подруги

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий